等差数列的前 n 项和(第一课时)教学设计
【教学目标】
一、知识与技能
1.掌握等差数列前 n 项和公式;
2.体会等差数列前 n 项和公式的推导过程;
3.会简单运用等差数列前 n 项和公式。
二、过程与方法
1. 通过对等差数列前 n 项和公式的推导,体会倒序相加求和的思想方法;
2. 通过公式的运用体会方程的思想。
三、情感态度与价值观
结合具体模型,将教材知识和实际生活联系起来,使学生感受数学的实用性,
有效激发学习兴趣,并通过对等差数列求和历史的了解,渗透数学史和数学文化。
【教学重点】
等差数列前 n 项和公式的推导和应用。
【教学难点】
在等差数列前 n 项和公式的推导过程中体会倒序相加的思想方法。
【重点、难点解决策略】
本课在设计上采用了由特殊到一般、从具体到抽象的教学策略。利用数形结
合、类比归纳的思想,层层深入,通过学生自主探究、分析、整理出推导公式的
思路,同时,借助多媒体的直观演示,帮助学生理解,师生互动、讲练结合,从
而突出重点、突破教学难点。
【教学用具】
多媒体软件,电脑
【教学过程】
一、明确数列前 n 项和的定义,确定本节课中心任务:
本节课我们来学习《等差数列的前 n 项和》,那么什么
叫数列的前 n 项和呢,对于数列{an}:a 1,a2,a3,…,
an,…我们称 a1+a2+a3+…+an 为数列{an}的前 n 项和,用 sn
表示,记 sn=a1+a2+a3+…+an,
如 S1 =a1, S7 =a1+a2+a3+……+a7,下面我们来共同探究如何求等差
数列的前 n 项和。
二、问题牵引,探究发现
问题 1:(播放媒体资料情景引入)印度泰姬陵世界七大奇迹之一。传说陵寝中
有一个三角形图案,以相同大小的圆宝石镶饰而成,共有 100 层(见图),奢靡
之程度,可见一斑。你知道这个图案一共花了多少圆宝石吗?
即: S100=1+2+3+······+100=?
著名数学家高斯小时候就会算,闻名于世;那么小高斯是如何
快速地得出答案的呢?请同学们思考高斯方法的特点,适合类型
和方法本质。特点: 首项与末项的和: 1+100=101,
第 2 项与倒数第 2 项的和: 2+99 =101,
第 3 项与倒数第 3 项的和: 3+98 =101,
· · · · · ·
第 50 项与倒数第 50 项的和: 50+51=101,
于是所求的和是: 101×50=5050。
1+2+3+ ······ +100= 101×50 = 5050
同学们讨论后总结发言:等差数列项数为偶数相加时首尾配对,变不同数的
加法运算为相同数的乘法运算大大提高效率。高斯的方法很妙,如果等差数列的
项数为奇数时怎么办呢?
探索与发现 1:假如让你计算从第一层到第 21 层的珠宝数,
高斯的首尾配对法行吗?
即计算 S21=1+2+3+ ······ +21 的值,在这个过程中让学生发现当
项数为奇数时,首尾配对出现了问题,通过动画演示引导帮助
学生思考解决问题的办法,为引出倒序相加法做铺垫。
把“全等三角形”倒置,与原图构成平行四边形。平行四
边形中的每行宝石的个数均为 21 个,共 21 行。有什么启
发?
1 + 2 + 3 + …… +20 +21
21 + 20 + 19 + …… + 2 +1
S21=1+2+3+…+21=(21+1)×21÷2=231
这个方法也很好,那么项数为偶数这个方法还行吗?
探索与发现 2:第 5 层到 12 层一共有多少颗圆宝石?
学生探究的同时通过动画演示帮助学生思考刚才的方法是否同样可行?请同学
们自主探究一下(老师演示动画帮助学生)
S8=5+6+7+8+9+10+11+12=
【设计意图】进一步引导学生探究项数为偶数的等差数列求和时倒序相加是否
可行。从而得出倒序相加法适合任意项数的等差数列求和,最终确立倒序相加
的思想和方法!
好,这样我们就找到了一个好方法——倒序相加法!现在来试一试如何求下
面这个等差数列的前 n 项和?
问题 2:等差数列 1,2,3,…,n, … 的前 n 项和怎么求呢?
解:(根据前面的学习,请学生自主思考独立完成)
1 2 3 ( 1)
( 1) ( 2) 2 1
2 (1 ) (1 ) (1 )
( 1)
2
n
n
n
n
n
s n n
s n n n
s n n n
n ns
= + + + + − +
= + − + − + + +
∴ = + + + + + +
+=
682
)125(8 =+×【设计意图】强化倒序相加法的理解和运用,为更一般的等差数列求和打下基
础。
至此同学们已经掌握了倒序相加法,相信大家可以推导更一般的等差数列前 n
项和公式了。
问题 3:对于一般的等差数列{an}首项为 a1,公差为 d,如何推导它的前 n 项和 sn
公式呢?
即求 =a1+a2+a3+……+an=
∴(1)+(2)可得:2
∴
公式变形:将 代入可得:
【设计意图】学生在前面的探究基础上水到渠成顺理成章很快就可以推导出一
般等差数列的前 n 项和公式,从而完成本节课的中心任务。在这个过程中放手
让学生自主推导,同时也复习等差数列的通项公式和基本性质。
三、公式的认识与理解:
1、根据前面的推导可知等差数列求和的两个公式为:
(公式一)
(公式二)
探究: 1、(1)相同点: 都需知道 a1 与 n;
(2)不同点: 第一个还需知道 an ,第二个还需知道 d;
(3)明确若 a1,d,n,an 中已知三个量就可求 Sn。
2、两个公式共涉及 a1, d, n, an,Sn 五个量,“知三”可“求二”。
2、探索与发现 3:等差数列前 n 项和公式与梯形面积公式有什么联系?
用梯形面积公式记忆等差数列前 n 项和公式,这里对图形进行了割、补两
种处理,对应着等差数列 n 项和的两个公式.,请学生联想思考总结来有助于
记忆。
ns
123121
11
21
(2)
(1)
aaaaaaaa
aaaS
aaaS
nnnn
nnn
nn
+==+=+=+
+++=
+++=
−−
−
)( 1 nn aanS +=
2
)( 1 n
n
aanS
+=
dnaan )1(1 −+= dnnnaS n 2
)1(
1
−+=
2
)( 1 n
n
aanS
+=
dnnnaaanS n
n 2
)1(
2
)(
1
1 −+=+=【设计意图】帮助学生类比联想,拓展思维,增加兴趣,强化记忆
四、公式应用、讲练结合
1、练一练:
有了两个公式,请同学们来练一练,看谁做的快做的对!
根据下列各题中的条件,求相应的等差数列{an}的 Sn :
(1) a1=5,an=95,n=10
解: 500
(2) a1=100,d=-2,n=50
解:
【设计意图】熟悉并强化公式的理解和应用,进一步巩固“知三求二”。
下面我们来看两个例题:
2、例题 1:
2000 年 11 月 14 日教育部下发了.某市据此提出了实施“校校通”工程的总目标:从 2001 年起用 10 年时间,在全市
中小学建成不同标准的校园网. 据测算,2001 年该市用于“校校通”工程的经
费为 500 万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加
50 万元.那么从 2001 年起的未来 10 年内,该市在“校校通”工程中的总投入是多少?
解:设从 2001 年起第 n 年投入的资金为 an,根据题意,数列{an}是一个等差数
列,其中 a1=500, d=50
那 么 , 到 2010 年 ( n=10 ) , 投 入 的 资 金 总 额 为
答: 从 2001 年起的未来 10 年内,该市在“校校通”工程中的总投入是 7250 万元。
【设计意图】让学生体会数列知识在生活中的应用及简单的数学建模思想方法。
3、例题 2:
已知一个等差数列{an}的前 10 项的和是 310,前 20 项的和是 1220,由这些
条件可以确定这个等差数列的前 n 项和的公式吗?
解:
法 1:由题意知
=+×=
2
)955(10
10s
2550)2(2
)150(501005050 =−×−×+×=s
7250502
9105001010 =××+×=s ,
代入公式 得:
解得 ,
法 2:由题意知
,
代入公式 得:
,
即 ,
② ①得, ,故
由 得 故
【设计意图】掌握并能灵活应用公式并体会方程的思想方法。
4、反馈达标:
练习一:在等差数列{an}中,a1=20, an=54,sn =999,求 n.
解:由 解 n=27
练习 2: 已知{an}为等差数列, ,求公差。
解:由公式 得
31010 =s 122020 =s
dnnnasn 2
)1(
1
++=
=+
=+
122019020
3104510
1
1
da
da
41 =a 6=d
nnnnnsn +=×++= 2362
)1(4
31010 =s 122020 =s
2
)( 1 n
n
aans
+=
3102
)(10 101
10 =+×= aas 12202
)(20 201
20 =+×= aas
①62101 =+ aa ②122201 =+ aa
− 60101020 ==− daa 6=d
62101 =+ aa 6292 1 =+ da 41 =a
26)1(1 −=−+= ndnaan
nnaans n
n +=+= 21 32
)(
2
)5420(999 += n
325
25 =− ss
dnnnasn 2
)1(
1
−+= 即 d=2
【设计意图】进一强化求和公式的灵活应用及化归的思想(化归到首项和公差这
两个基本元)。
五、归纳总结 分享收获:(活跃课堂气氛,鼓励学生大胆发言,培养总结和表达
能力)
1、倒序相加法求和的思想及应用;
2、等差数列前 n 项和公式的推导过程;
3、掌握等差数列的两个求和公式 , ;
4、前 n 项和公式的灵活应用及方程的思想。
…………
六、作业布置:
(一)书面作业:
1.已知等差数列{an},其中 d=2,n=15, an =-10,求 a1 及 sn。
2.在 a,b 之间插入 10 个数,使它们同这两个数成等差数列,求这 10 个数的和。
(二)课后思考:
思考:等差数列的前 n 项和公式的推导方法除了倒序相加法还有没有其它方法
呢?
【设计意图】通过布置书面作业巩固所学知识及方法,同时通过布置课后思考
题来延伸知识拓展思维。
附:板书设计
等差数列的前 n 项和
一、 数列前 n 项和的
定义:
二、 等差数列前 n 项
和公式的推导:
三、 公式的认识与理
解:
公式一:
公式二:
四:例题及解答: 议练活动:
32
2
5
105 11 =+−+ dada
2
)( 1 n
n
aans
+= dnnnasn 2
)1(
1
−+=