1
第四章 一次函数
4. 一次函数的应用(第 1 课时)
一、学生起点分析
本节课之前,学生已初步掌握了函数的概念、一次函数的图象及性质,并了
解了函数的三种表达方式:图象法、列表法、解析式法。在此基础上引导学生根
据图象等信息列出一次函数表达式的方法,并进一步感受数形结合的思想方
法.
二、教学任务分析
本节课是北师大版义务教育教科书八年级上第四章《一次函数》第四节的第一
课时,主要内容是利用图象、表格等信息,确定一次函数的表达式.与原教材相
比,新教材更注重与实际联系,更加注重培养学生掌握数形结合这一重要的思想
方法;并且让学生更加明确确定一次函数的表达式需要两个独立的条件,这个问
题虽然简单,但它涉及数学对象的一个本质概念---基本量.值得一提的是确定
一次函数表达式,需要根据两个条件列出关于 、 的方程组,而二元一次方程
组是下一章的学习内容,因此本节所研究的一次函数,某个参数应较易于从所给
条件中获得,从而转化为通过另一个条件确定另一个参数的问题.因此,在教学
中要注意控制问题的难度,对于一般问题,可在下一章的学习中再加强训练.
本节课的教学目标是:
①了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)
利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际
问题.
②经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函
数的表达式,进一步发展数形结合的思想方法;
③经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓
展学生的思维.
三、教学过程设计
k b2
本节课设计了六个教学环节:
本节课设计了六个教学环节:第一环节:复习引入;第二环节:初步探究;
第三环节:深入探究;第四环节:反馈练习与知识拓展;第五环节:课时小结;
第六环节:作业布置.
第一环节 复习引入
内容:提问:(1)什么是一次函数?
(2)一次函数的图象是什么?
(3)一次函数具有什么性质?
目的:学生回顾一次函数相关知识,温故而知新.
第二环节 初步探究
内容 1:
展示实际情境
提供两个问题情境,供老师选用.
实际情境一:某物体沿一个斜坡下滑,它的速度 v( 米/ 秒)
与其下滑时间 t(秒 )的关系如图所示.
(1)写出 v 与 t 之间的关系式;
(2)下滑 3 秒时物体的速度是多少?
分析:要求 v 与 t 之间的关系式,首先应观察图象,确定函数的类型,然后
根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数
即可.
实际情境二:假定甲、乙二人在一项赛跑中路程 与时间
的关系如图所示.
(1)这是一次多少米的赛跑?
(2)甲、乙二人谁先到达终点?
(3)甲、乙二人的速度分别是多少?
(4)求甲、乙二人 与 的函数关系式.
目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学
y
x
y x3
生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感
受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景
二几个问题有一定的梯度,学生可能更易写出函数关系式.
教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先
求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出
待定系数法.
内容 2:
想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式
呢?
目的:在实践的基础上学生加以归纳总结。这个问题涉及到数学对象的一个
本质概念——基本量.由于一次函数有两个基本量 、 ,所以需要两个条件来
确定.
第三环节 深入探究
内容 1:
例 1 在弹性限度内,弹簧的长度 y(厘米)是所挂物体的质量 x(千克)的一
次函数,一根弹簧不挂物体时长 14.5cm;当所挂物体的质量为 3kg 时,弹簧长
16cm。写出 y 与 x 之间的关系式,并求所挂物体的质量为 4kg 时弹簧的长度.
解:设 ,根据题意,得
14.5= , ①
16=3 + ,②
将 代入②,得 .
所以在弹性限度内, .
当 时, (厘米).
即物体的质量为 千克时,弹簧长度为 厘米.
目的:
引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个
物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步
体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一
次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而
k b
bkxy +=
b
k b
5.14=b 5.0=k
5.145.0 += xy
4=x 5.165.1445.0 =+×=y
4 5.164
解.
教学注意事项:
学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:
挂 3 千克伸长了 1.5 厘米,则每千克伸长了 0.5 厘米,同样可以得到 与 间的
关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所
不同.
内容 2:
想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否
总结出求一次函数表达式的步骤.
求函数表达式的步骤有:1.设一次函数表达式.
2.根据已知条件列出有关方程.
3.解方程.
4.把求出的 k,b 值代回到表达式中即可.
目的:对求一次函数表达式方法的归纳和提升。在此基础上,教师可指出这
种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种
方法称为待定系数法.
第四环节 反馈练习
内容:
1.如图,直线 是一次函数 的图象,求它的表达
式.
2.若一次函数 的图象经过 A(-1,1),则 ,该函
数图象经过点 B(1, )和点 C( ,0).
3.如图,直线 是一次函数 的图象,填
空:
(1) , ;
(2)当 时, ;
y x
l bkxy +=
bxy += 2 =b
l bkxy +=
=b =k
30=x =y5
(3)当 时, .
4.已知直线 与直线 平行,且与 y 轴交于点(0,2),求直线 的
表达式.
答案:
1.
2. .
3.(1) ;
(2) ;
(3) .
4. .
目的:
四个练习旨在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整
教学进程.
效果:
四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方
法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问
题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠
正并给予示范,训练学生规范答题的习惯.
30=y =x
l xy 2−= l
xy 3−=
)0,2
3(),5,1(,3 −= CBb
3
2,2 −== kb
18−
42−
22 +−= xy6
第五环节 课时小结
内容:
总结本课知识与方法
1.本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达
式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或
具体问题)求出 , 的值,从而确定函数解析式。其步骤如下:(1)设函数
表达式;(2)根据已知条件列出有关 k,b 的方程;(3)解方程,求 k,b;
4.把 k,b 代回表达式中,写出表达式.
2.本节课用到的主要的数学思想方法:数形结合、方程的思想.
目的:
引导学生小结本课的知识及数学方法,使知识系统化.
第六环节 作业布置
习题4.5:1,2,3,4
目的:进一步巩固当天所学知识。教师也可根据学生情况适当增减,但难度
不应过大.
四、教学设计反思
1.设计理念
本节课的重点是要学生了解正比例函数的确定需要一个条件,一次函数的确
定需要两个条件,能由条件利用待定系数法求出一些简单的一次函数表达式,并
能解决有关现实问题.本节课设计注重发展了学生的数形结合的思想方法及综合
分析解决问题的能力及应用意识的培养,为后继学习打下基础.
2.突出重点、突破难点策略
探究的过程由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,
又让学生深切体会到一次函数就在我们身边,应用非常广泛.教学中注意到利用
问题串的形式,层层递进,逐步让学生掌握求一次函数表达式的一般方法.教学
中还注意到尊重学生的个体差异,使每个学生都学有所获.
3.分层教学
根据本班学生及教学情况可在教学过程中选择拓展资源中内容进行补充或拓展,
也可留作课后作业.
k b