高中数学 (2.3.1 等差数列的前n项和(一))示范教案 新人教A版必修5.doc
加入VIP免费下载

高中数学 (2.3.1 等差数列的前n项和(一))示范教案 新人教A版必修5.doc

ID:108082

大小:279.5 KB

页数:6页

时间:2020-09-02

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.3 等差数列的前 n 项和 2.3.1 等差数列的前 n 项和(一) 从容说课 “等差数列的前 n 项和”第一节课主要通过高斯算法来引起学生对数列求和的兴趣,进 而引导学生对等差数列的前 n 项和公式作出探究,逐步引出求和公式以及公式的变形,初步 形成对等差数列的前 n 项和公式的认识,让学生通过探究了解一些解决数学问题的一般思路 和方法,体会从特殊到一般,再从一般到特殊的思维规律,所以,在教学中宜采用以问题驱 动、层层铺垫,从特殊到一般启发学生获得公式的推导方法.为了让学生较熟练地掌握公式, 要采用设计变式题的教学手段. 通过本节的例题的教学,使学生感受到在实际问题中建立数学模型的必要性,以及如何 去建立数学模型的方式方法,培养学生善于从实际情境中去发现数列模型,促进学生对本节 内容的认知结构的形成. 教学重点 等差数列的前 n 项和公式的理解、推导及应用. 教学难点 灵活应用等差数列前 n 项和公式解决一些简单的有关问题. 教具准备 多媒体课件、投影仪、投影胶片等 三维目标 一、知识与技能 掌握等差数列前 n 项和公式及其获取思路;会用等差数列的前 n 项和公式解决一些简单 的与前 n 项和有关的问题. 二、过程与方法 通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律, 初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思 维灵活性与广阔性的训练,发展学生的思维水平. 三、情感态度与价值观 通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数 学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验, 产生热爱数学的情感. 教学过程 导入新课 教师出示投影胶片 1: 印度泰姬陵(Taj Mahal)是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印 度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印 度伊斯兰教文化的象征. 陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相 同大小的圆宝石镶饰而成,共有 100 层(如下图),奢华之程度,可见一斑.你知道这个图案 中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段) 生 只要计算出 1+2+3+…+100 的结果就是这些宝石的总数. 师 对,问题转化为求这 100 个数的和.怎样求这 100 个数的和呢?这里还有一段故事. 教师出示投影胶片 2: 高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现 在给大家出道题目:1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答 说: “1+2+3+…+100=5 050.” 教师问:“你是如何算出答案的?” 高斯回答说:因为 1+100=101;2+99=101;…;50+51=101,所以 101×50=5 050. 师 这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢? 生 高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有 50 个 101,所以 1+2+3+…+100=50×101=5 050. 师 对,高斯算法的高明之处在于他发现这 100 个数可以分为 50 组,第一个数与最后一个数 一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相 等,都等于 101,50 个 101 就等于 5 050 了. 高斯算法将加法问题转化为乘法运算,迅速准确得到了结果. 作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找 出某些规律性的东西. 师 问:数列 1,2,3,…,100 是什么数列?而求这一百个数的和 1+2+3+…+100 相当于什 么? 生 这个数列是等差数列,1+2+3+…+100 这个式子实质上是求这数列的前 100 项的和. 师 对,这节课我们就来研究等差数列的前 n 项的和的问题. 推进新课 [合作探究]师 我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第 1 层到 第 21 层,得到右图,则图中第 1 层到第 21 层一共有多少颗宝石呢? 生 这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求 和就好首尾配成对了. 师 高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们 是否有简单的方法来解决这个问题呢? 生 有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的 每行宝石的个数均为 22 个,共 21 行.则三角形中的宝石个数就是 . 师 妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写 成式子就是: 1+2+3+…+21, 21+20+19+…+1, 对齐相加(其中下第二行的式子与第一行的式子恰好是倒序) 这实质上就是我们数学中一种求和的重要方法——“倒序相加法”. 现在我将求和问题一般化: (1)求 1 到 n 的正整数之和,即求 1+2+3+…+(n-1)+n.(注:这问题在前面思路的引导下可由 学生轻松解决) (2)如何求等差数列{an}的前 n 项的和 Sn? 生 1 对于问题(2),我这样来求:因为 Sn=a1+a2+a3+…+an, Sn=an+an-1+…+a2+a1, 再将两式相加,因为有等差数列的通项的性质:若 m+n=p+q,则 am+an=ap+aq, 所以 .(Ⅰ) 生 2 对于问题(2),我是这样来求的: 因为 Sn=a1+(a1+d)+(a1+2d)+(a1+3d)+…+[a1+(n-1)×d], 所以 Sn=na1+[1+2+3+…+(n-1)]d=na1+ d, 即 Sn=na1+ d.(Ⅱ) [教师精讲] 两位同学的推导过程都很精彩,一位同学是用“倒序相加法”,后一位同学用的是基本量来 转化为用我们前面求得的结论,并且我们得到了等差数列前 n 项求和的两种不同的公式.这 两种求和公式都很重要,都称为等差数列的前 n 项和公式.其中公式(Ⅰ)是基本的,我们可以 发现,它可与梯形面积公式(上底+下底)×高÷2 相类比,这里的上底是等差数列的首项 a1, 下底是第 n 项 an,高是项数 n,有利于我们的记忆. [方法引导] 师 如果已知等差数列的首项 a1,项数为 n,第 n 项为 an,则求这数列的前 n 项和用公式(Ⅰ) 来进行,若已知首项 a1,项数为 n,公差 d,则求这数列的前 n 项和用公式(Ⅱ)来进行. 引导学生总结:这些公式中出现了几个量? 生 每个公式中都是 5 个量. 师 如果我们用方程思想去看这两个求和公式,你会有何种想法? 生 已知其中的三个变量,可利用构造方程或方程组求另外两个变量(知三求二). 师当公差 d≠0 时,等差数列{an}的前 n 项和 Sn 可表示为 n 的不含常数项的二次函数,且这 2 21)211( ×+ 2 )( 1 n n aanS += 2 )1( −nn 2 )1( −nn二次函数的二次项系数的 2 倍就是公差. [知识应用] 【例 1】 (直接代公式)计算: (1)1+2+3+…+n; (2)1+3+5+…+(2n-1); (3)2+4+6+…+2n; (4)1-2+3-4+5-6+…+(2n-1)-2n. (让学生迅速熟悉公式,即用基本量观点认识公式)请同学们先完成(1)~(3),并请一位同学 回答. 生 (1)1+2+3+…+n= ; (2)1+3+5+…+(2n-1)= =n2 ; (3)2+4+6+…+2n= =n(n+1). 师第(4)小题数列共有几项?是否为等差数列?能否直接运用 Sn 公式求解?若不能,那应如 何解答?(小组讨论后,让学生发言解答) 生 (4)中的数列共有 2n 项,不是等差数列,但把正项和负项分开,可看成两个等差数列, 所以原式= [1+3+5+…+(2n-1)]-(2+4+6+…+2n)=n2-n(n+1)=-n. 生 上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式 =(-1)+(-1)+(-1)+…+(-1)=-n. 师 很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法.注意在运用求和公 式时,要看清等差数列的项数,否则会引起错解. 【例 2】 (课本第 49 页例 1) 分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有 用信息吗? 生 由题意我发现了等差数列的模型,这个等差数列的首项是 500,记为 a1,公差为 50,记 为 d,而从 2001 年到 2010 年应为十年,所以这个等差数列的项数为 10.再用公式就可以算 出来了. 师 这位同学说得很对,下面我们来完成此题的解答.(按课本解答示范格式) 【例 3】 (课本第 50 页例 2)已知一个等差数列的前 10 项的和是 310,前 20 项的和是 1 220,由此可以确定求其前 n 项和的公式吗? 分析:若要确定其前 n 项求和公式,则必须确定什么? 生 必须要确定首项 a1 与公差 d. 师 首项与公差现在都未知,那么应如何来确定? 生 由已知条件,我们已知了这个等差数列中的 S10 与 S20,于是可从中获得两个关于 a1 和 d 的关系式,组成方程组便可从中求得. (解答见课本第 50 页) 师 通过上面例题 3 我们发现了在以上两个公式中,有 5 个变量.已知三个变量,可利用构造 方程或方程组求另外两个变量(知三求二).运用方程思想来解决问题. [合作探究] 师 请同学们阅读课本第 50 页的例 3,阅读后我们来互相进行交流. (给出一定的时间让学生对本题加以理解) 师 本题是给出了一个数列的前 n 项和的式子,来判断它是否是等差数列.解题的出发点是什 么? 生 从所给的和的公式出发去求出通项. 2 )1( +nn 2 )11( −+ nn 2 )22( +nn师 对的,通项与前 n 项的和公式有何种关系? 生 当 n=1 时,a1=S1,而当 n>1 时,an=Sn-Sn-1. 师 回答的真好!由 Sn 的定义可知,当 n=1 时,S1=a1;当 n≥2 时,an=Sn-S n-1, 即 an=S1(n=1), Sn-S n-1(n≥2).这种已知数列的 Sn 来确定数列通项的方法对任意数列都是可行的.本题用这 方法求出的通项 an=2n- ,我们从中知它是等差数列,这时当 n=1 也是满足的,但是不是 所有已知 Sn 求 an 的问题都能使 n=1 时,an=Sn-Sn-1 满足呢?请同学们再来探究一下课本第 51 页的探究问题. 生 1这题中当 n=1 时,S1=a1=p+q+r;当 n≥2 时,an=Sn-Sn-1=2pn-p+q,由 n=1 代入的结果为 p+q,要使 n=1 时也适合,必须有 r=0. 生 2 当 r=0 时,这个数列是等差数列,当 r≠0 时,这个数列不是等差数列. 生 3 这里的 p≠0 也是必要的,若 p=0,则当 n≥2 时,an=Sn-S n-1=q+r,则变为常数列了, r≠0 也还是等差数列. 师如果一个数列的前 n 项和公式是常数项为 0,且是关于 n 的二次型函数,则这个数列一定 是等差数列,从而使我们能从数列的前 n 项和公式的结构特征上来认识等差数列.实质上等 差数列的两个求和公式中皆无常数项. 课堂练习 等差数列-10,-6,-2,2,…前多少项的和是 54? (学生板演) 解:设题中的等差数列为{an},前 n 项和为 Sn, 则 a1=-10,d=(-6)-(-10)=4,Sn=54, 由公式可得-10n+ ×4=54. 解之,得 n1=9,n2=-3(舍去). 所以等差数列-10,-6,-2,2…前 9 项的和是 54. (教师对学生的解答给出评价) 课堂小结 师 同学们,本节课我们学习了哪些数学内容? 生 ①等差数列的前 n 项和公式 1: , ②等差数列的前 n 项和公式 2: . 师 通过等差数列的前 n 项和公式内容的学习,我们从中体会到哪些数学的思想方法? 生 ①通过等差数列的前 n 项和公式的推导我们了解了数学中一种求和的重要方法——“倒 序相加法”. ②“知三求二”的方程思想,即已知其中的三个变量,可利用构造方程或方程组求另外两个 变量. 师 本节课我们通过探究还得到了等差数列的性质中的什么内容? 生如果一个数列的前 n 项和公式中的常数项为 0,且是关于 n 的二次型函数,则这个数列一 定是等差数列,否则这个数列就不是等差数列,从而使我们能从数列的前 n 项和公式的结构 特征上来认识等差数列. 布置作业 课本第 52 页习题 2.3 A 组第 2、3 题. 2 1 2 )1( −nn 2 )( 1 n n aanS += 2 )1( 1 dnnnaSn −+=板书设计 等差数列的前 n 项和(一) 公式: 推导过程 例 2 )1( 2 )( 1 1 dnnnaaanS n n −+=+=

资料: 4978

进入主页

人气:

10000+的老师在这里下载备课资料