三角函数公式大全.doc
加入VIP免费下载

三角函数公式大全.doc

ID:108578

大小:167.5 KB

页数:8页

时间:2020-09-10

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tan(A-B) = cot(A+B) = cot(A-B) = 倍角公式 tan2A = Sin2A=2SinA•CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan( +a)·tan( -a) tanAtanB-1 tanBtanA + tanAtanB1 tanBtanA + − cotAcotB 1-cotAcotB + cotAcotB 1cotAcotB − + Atan1 2tanA 2− 3 π 3 π半角公式 sin( )= cos( )= tan( )= cot( )= tan( )= = 和差化积 sina+sinb=2sin cos sina-sinb=2cos sin cosa+cosb = 2cos cos cosa-cosb = -2sin sin tana+tanb= 积化和差 sinasinb = - [cos(a+b)-cos(a-b)] cosacosb = [cos(a+b)+cos(a-b)] sinacosb = [sin(a+b)+sin(a-b)] cosasinb = [sin(a+b)-sin(a-b)] 2 A 2 cos1 A− 2 A 2 cos1 A+ 2 A A A cos1 cos1 + − 2 A A A cos1 cos1 − + 2 A A A sin cos1− A A cos1 sin + 2 ba + 2 ba − 2 ba + 2 ba − 2 ba + 2 ba − 2 ba + 2 ba − ba ba coscos )sin( + 2 1 2 1 2 1 2 1诱导公式 sin(-a) = -sina cos(-a) = cosa sin( -a) = cosa cos( -a) = sina sin( +a) = cosa cos( +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = 万能公式 sina= cosa= tana= 2 π 2 π 2 π 2 π a a cos sin 2)2(tan1 2tan2 a a + 2 2 )2(tan1 )2(tan1 a a + − 2)2(tan1 2tan2 a a −其它公式 a•sina+b•cosa= ×sin(a+c) [其中 tanc= ] a•sin(a)-b•cos(a) = ×cos(a-c) [其中 tan(c)= ] 1+sin(a) =(sin +cos )2 1-sin(a) = (sin -cos )2 其他非重点三角函数 csc(a) = sec(a) = 双曲函数 sinh(a)= cosh(a)= tg h(a)= 公式一 设 α 为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα )b(a 22 + a b )b(a 22 + b a 2 a 2 a 2 a 2 a asin 1 acos 1 2 e-e -aa 2 ee -aa + )cosh( )sinh( a a公式二 设 α 为任意角,π+α 的三角函数值与 α 的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三 任意角 α 与 -α 的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四 利用公式二和公式三可以得到 π-α 与 α 的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五 利用公式-和公式三可以得到 2π-α 与 α 的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα公式六 ±α 及 ±α 与 α 的三角函数值之间的关系: sin( +α)= cosα cos( +α)= -sinα tan( +α)= -cotα cot( +α)= -tanα sin( -α)= cosα cos( -α)= sinα tan( -α)= cotα cot( -α)= tanα sin( +α)= -cosα cos( +α)= sinα tan( +α)= -cotα cot( +α)= -tanα sin( -α)= -cosα cos( -α)= -sinα tan( -α)= cotα cot( -α)= tanα (以上 k∈Z) A•sin(ωt+θ)+ B•sin(ωt+φ) = ×sin 2 π 2 3π 2 π 2 π 2 π 2 π 2 π 2 π 2 π 2 π 2 3π 2 3π 2 3π 2 3π 2 3π 2 3π 2 3π 2 3π )cos(222 ϕθ ⋅++ ABBA )cos(2 )Bsininarcsin[(Ast 22 ϕθ ϕθω ⋅++ ++ ABBA三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角 正切定理 [(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]} --------------------------------------------------------------------------------------------

资料: 4978

进入主页

人气:

10000+的老师在这里下载备课资料