第四章 三角形
4 用尺规作三角形
一、学生起点分析
学生的知识基础:学生在七年级上册教材中已经学习过了尺规作图。其中包
括理解尺规作图的含义,能完成作一条线段等于已知线段、作一个角等于已知角
的基本作图,初步掌握了尺规作图。而对于三角形,它是最简单、最基本的几何
图形,学生在生活中随处可见。并且在本章的前 4 节中学生已经对三角形的有关
概念及相关结论有了进一步的学习,如认识三角形、全等三角形、探索三角形全
等条件。学生已经具备了作三角形的基本知识与技能。
学生的活动经验:在相关知识的学习过程中,学生已经经历了观察、折纸、
拼图、画图、想象、推理、交流等活动,发展了空间观念,积累了一些数学活动
经验,具备了一定的动手实践与合作交流能力。
二、教学任务分析
在学生现有的知识和活动经验的基础上,提出具体的教学及学习任务:在分
别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形,并
能用自己的语言表述作图的过程。学生在本学段完成后会书写“已知、求作和作
法”。能结合三角形全等条件与同伴交流作图过程和结果的合理性。为此,本节
课的教学目标是:
1、知识与技能:经历尺规作图实践操作过程,训练和提高学生的尺规作图
的技能,能根据条件作出三角形。
2、过程与方法:能依据规范作图语言,作出相应的图形,在实践操作过程
中,逐步规范作图语言。
3、情感与态度:通过与同伴交流作图过程和结果的合理性,体会对问题的
说明要有理有据。
三、教学设计分析
本节课设计了 7 个环节:情境引入——作三角形——合作分享——基础练习
——拓展提高——课堂小结——布置作业。
第一环节 情境引入活动内容:首先提出“豆豆书上的三角形被墨迹污染了一部分,你能帮他在
作业本上画出一个与书上完全一样的三角形吗?”的问题,自然地引发学生思考
“如何作一个三角形与已有的三角形一样呢?”与此同时引导学生回顾三角形
的基本元素,以及学过的基本作图——作一条线段等于已知线段、作一个角等于
已知角。学生思考后独立回答。对于两种基本尺规作图,找两名学生板演示范,
其他学生在练习本上做。完成后,请学生试着叙述作法,教师规范学生的语言。
活动目的:通过学生处理身边经历过的事情,激发学生学习数学的兴趣,培
养学生的善于观察生活,并能从生活中提炼出数学模型的能力。同时对两个基本
尺规作图的复习是为后面的学习做铺垫。自然引出本节课的主要研究内容“如何
利用尺规作一个三角形与已知三角形全等呢?”
实际教学效果:学生一开始在问题情境下进行积极思考,想各种办法进行解
决,如:用一张薄纸覆盖在三角形上,描出来未被污染的部分,将污染了一部分
的两边延长,两边相交,即恢复成了原来的三角形。提出方案的同时,引导学生
考虑方案的可行性。此时,教师与学生一起回顾三角形的基本元素,及尺规的基
本作图——线段、角。学生能熟练的画一条线段等于已知线段,并用语言描述作
图过程。而对于画一个角等于已知角,有些学生作起来稍显困难,需教师重新示
范,并说明作图过程。在这一复习过程中,教师对做得好的学生给予鼓励,说明
学习知识要扎实,基础打得好后续的学习才会比较容易。
第二环节 作三角形
活动内容:师生共同探索、研究、交流、经历利用尺规作三角形,学生用自
己的语言表述作图的过程。本环节学生要按要求完成三个尺规作三角形的内容:
(1)已知三角形的两角及其夹边,求作这个三角形;(豆豆所求助的三角形)
(2)已知三角形的两边及其夹角,求作这个三角形;
(3)已知三角形的三边,求作这个三角形。
首先,学生在教师的引导下分析、交流作三角形时作边与角的先后顺序,再
作所求的三角形。第一个作图教师给出作法,并演示作图过程,让学生进行模仿
操作;第二个作图只给出作法,不演示,让学生根据已知步骤独立作出图形;第
三个作图让学生自己探索作法,并独立作出图形。学生在每个作图完成后,进一
步思考“还有没有其他的作法?”,思考后进行操作,尝试表述作图过程,并组织全班进行交流。再提出“大家画出的三角形是否全等”的问题供学生讨论。
活动目的:本环节通过分析——操作——再分析的形式培养学生分析和解决
问题的能力。学生通过经历从模仿、独立完成作图、到探索作图的过程,巩固尺
规作图的技能,循序渐进的会书写“已知、求作和作法”。在完成三个作图后,
都鼓励学生比较各自所作的三角形,利用重合等直观方式观察所作出的三角形是
否全等。在此基础上,还引导学生利用已经获得的三角形全等的条件来说明大家
所作出的三角形一定是全等的,即说明作法的合理性。这实际上体现了只管操作
与推理的相结合,并从中也使学生意识到这两种方法的不同。
实际教学效果:在教师示范第一个作图之后,学生能够学着模仿分析和操作
下面的作图,并且在不断地作一个角等于已知角的过程中,逐渐达到熟练。从而,
学生可以自己探索作法,并独立作出图形。在整个过程中,学生的画图要比表述
作图过程(即写作法)显得自如,有信心。大多数学生对“用准确的语言描述作
图过程”感到有很大的困难。即使这样,也要鼓励学生亲自张嘴说一说,尽他的
最大可能描述自己的作图顺序及过程,教师即时地加以引导、完善、规范作图所
用地语言。使学生可以很快地自己独立完成作图和作法。本环节注意模仿与自主
学习的相结合,给学生一个展示自己思维的一个平台。
学生在完成每一个作图后,都要思考“依据给出的条件作出的三角形会全等
吗?”学生能够很好地根据刚刚学过的三角形全等的判别方法中的“ASA”、“SAS”
和“SSS”来进行说明,从中体会做法的合理性以及直观操作与推理的相结合。
第三环节 合作分享
活动内容:以 4 人合作小组为单位,根据问题开展活动。
问题(1)你都知道有哪些常用的作图语言可以用于描述作图过程(即作
法)?
问题(2)我们是如何分析作图题的?它的步骤是什么?
活动目的:学生通过前一环节的实践操作,已经有了一定的作图经验。在此
基础上提出这两个问题是为了让学生对刚刚的作图过程进行回顾、总结,培养学
生善于思考,善于归纳数学方法的能力;并加强学生的语言表达能力。这一环节
无论是对已完成的实践操作,还是下面的实战练习都起到至关重要的作用——承
上启下。实际教学效果:各合作小组成员在已有的作图经验基础上积极参与,各抒己
见,尽可能多的挖掘作图语言和详细的分析步骤,一派紊而不乱的讨论气氛。最
后各小组把自己的研究成果在全班进行展示,与大家分享。在分享的同时全班进
行交流,取长补短,使语言更加规范、精练。达到集思广益、互帮互助的教学效
果。
第四环节 基础练习
活动内容:1、你能用尺规作一个直角三角形,使其两条直角边分别等于已
知线段 a,b 吗?并写出作法。
2、已知∠α和∠β、线段 a,用尺规作一个三角形,使其一个内角等于∠
α,另一个内角等于∠β ,且∠α的对边等于 a。
活动目的:对本节的知识进行巩固练习。特别是习题 2 可以锻炼学生思维,
考察学生的应变能力,培养学生的转换思想。并且可以从中体会“AAS”直观操
作与推理的相结合。
实际教学效果:学生基本都能很熟练地、快速地分析并作出习题 1 的三角形,
教学效果较好。而对于习题 2,需要通过平角画出第三个内角,转换成“ASA”
的情况,学生的这种转换思想稍显薄弱,需要教师加以引导、启发。而学生对于
转换之后的作图信心十足,能够快且好的完成。
第五环节 拓展提高
活动内容:已知线段 a,b 和∠α,求作△ABC,使其有一个内角等于∠α,
且∠α的对边等于 a,另有一边等于 b。
βα
a b
a做完后进一步提问:同样是已知两边及一角,为什么会出现两个三角形呢?
你从中可以感悟到什么?
活动目的:在学生现有的作图经验基础上,提出多解问题,拓展学生思维,
提高学生分析问题的能力。通过“两边及其夹角”和“两边及一边的对角”问题
的对比分析,加深学生对判别三角形全等条件“SAS”的理解,和“SSA”反例的
印象。
实际教学效果:学生能够通过自己的分析画出一种三角形的情况,很能想到
最后的一段弧会与已作的射线有两个交点,需要在教师的引导和示范下完成。但
对于有两个三角形满足条件理解较好。因此,需要开阔学生的视野,提高分析问
题的能力。
第六环节 课堂小结
活动内容:师生互相交流作三角形的体会,如何分析作图题,作图语言的应
用以及三角形全等条件与作图之间的关系。
活动目的:鼓励学生结合自己本节课的实践体验,谈自己的收获与感想,并
与大家交流。锻炼学生组织语言及表达能力,经历与同伴分享成果的快乐过程。
实际教学效果:学生畅所欲言自己的实际收获:会利用尺规作一个三角形;
学到了一些作图时常用的作图语言;更深一步理解了三角形全等的判别条件是有
图可依的……
第七环节 布置作业
教科书习题 4.9-2,3,4。
四、教学设计反思
1、注重学生经历作图的过程
本节课的重点在于利用尺规依据条件作三角形,并用语言描述作法。因此在
教学时留给学生充分的时间动手实践和整理表达。而教师在这里只是一个引导者、
协助者的角色,辅助学生更好地完成实践与表达,并及时给予鼓励,使学生对自
αa b己能够独立完成任务充满信心。
特别在学生描述作法时,能让学生充分表达后,再给予补充和修改,千万不
要用教师的语言代替学生正在逐渐学习中的不够完美的表达。学生只有在自己亲
身经历了想象、组织、表达、纠正后印象才会深刻,并且符合学习的规律性。
2、要创造性的使用教材
在教材中,本节课重要介绍了按三个不同的条件作三角形,分别是“ASA”、
“SAS”、“SSS”,这三个都是用来判别三角形全等的条件,在本节课中通过作图,
得到进一步的直观验证。为了使学生在前面探索出的三角形全等条件全都得到直
观认识,因此增加了“已知两角及一角的对边(AAS)”和“已知两边及一边的对
角(SSA)”两种情况的研究,使学生能够全面的理解为什么 ASA、SAS、SSS、AAS
可以作为三角形全等的条件,而 SSA 是不能判别两三角形全等的。直观、形象、
亲历亲为地把直观操作与推理有效的结合起来。
3、可以调整和改进的方面
在教学时应及时了解并尊重学生的个体差异。学生的个体差异重要表现为认
知方式和思维策略的不同,以及认知水平和学习能力的差异,因此在教学时要及
时调整方式,尽可能满足多样化的学习需要,以认知水平、学习能力较好一些的
学生带动稍微薄弱的学生的思维,但却不能代替他们的思考,掩盖他们的疑问。
在小组合作和全班交流中给不同层次的学生留有一个平台,互相学习,取长补短,
使知识的学习和吸收更具有实效性。