分式与分式方程 分式方程(一).doc
加入VIP免费下载

分式与分式方程 分式方程(一).doc

ID:109087

大小:51.5 KB

页数:5页

时间:2020-09-21

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 第五章 分式与分式方程 4.分式方程(一) 总体说明 本节共三个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问 题中的应用。彼此之间由浅入深。是“实际问题——分式方程建模——求解——解释解 的合理性”过程。本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节 解分式方程打下了扎实的基础。同时应注意对学生进行过程性评价,要延迟评价学生运 算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算 理的理解上。 一、学生起点分析 学生的知识技能基础:能熟练准确地解一元一次方程;已学过分式的定义;了解分 式有意义的条件;能利用分式的基本性质进行约分通分;课前预习知晓分式方程的概念 。 学生活动经验基础:八年级的学生已经具备了一定的自主探究能力和分析问题的能 力,并对发现新问题以及寻求解决办法有相当的兴趣和积极的愿望. 二、教学任务分析 教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题, 解释所获得结果的合理性。对于常用的数量关系,虽然学生以前大都接触过,但在本节 的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生 举一反三,进一步提高分析问题与解决问题的能力。 本节课的具体教学目标为: 1.理解分式方程的概念; 2.能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。 3.在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成 就感,提高解决问题的能力。 三、教学过程分析2 本节课设计了 5 个教学环节:引入新课——探索新知——感悟升华 ——课堂反馈 ——自我小结 第一环节 引入新课 活动内容: 在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题。 面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限 内固沙造林 2400 公顷,实际每月固沙造林的面积比原计划多 30 公顷,结果提前 4 个月 完成计划任务。原计划每月固沙造林多少公顷? 分析:这一问题中有哪些已知量和未知量? 已知量:造林总面积 2400 公顷实际每月造林面积比原计划多 30 公顷提前 4 个月完 成原任务 未知量:原计划每月固沙造林多少公顷 这一问题中有哪些等量关系? 实际每月固沙造林的面积=计划每月固沙造林的面积+30 公顷 原计划完成的时间—完成实际的时间=4 个月 我们设原计划每月固沙造林 x 公顷,那么原计划完成一期工程需要___个月,实 际完成一期工程用了____个月,根据题意,可得方程__________。 活动目的:为了让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体 会分式方程的模型在解决实际生活问题中作用,利用第一节《分式》中一个熟悉的问题, 引导学生努力寻找问题中的所有等量关系,发展学生分析问题、解决问题的能力。 注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,根据学生的情况 教师可以给予适当的提示和引导. 第二环节 探究新知 活动内容: 甲、乙两地相距 1400 km,乘高铁列车从甲地到乙地比乘特快列车少用 9 h,已 知高铁列车的平均行驶速度是特快列车的 2.8 倍. (1)你能找出这一问题中的所有等量关系吗? (2)如果设特快列车的平均行驶速度为 x km/h,那么 x 满足怎样的方程?3 (3)如果设小明乘高铁列车从甲地到乙地需 y h,那么 y 满足怎样的方程? 活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体 会分式方程的模型作用,设置了这么一个例题,关键是引导学生努力寻找问题中的所有 等量关系,发展学生分析问题、解决问题的能力。 注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,通过同学之间相 互讨论,解决问题,同时要注意引导学生理解每一步的实际意义 活动内容: 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知七年级 同学捐款总额为4800 元,八年级同学捐款总额为5000元,八年级捐款人数比七年级多 20 人,而且两个年级人均捐款额恰好相等.如果设七年级捐款人数为 x 人,那么 x 满足 怎样的方程? 活动目的:再次让学生经历从实际问题抽象、概括分式方程这一“数学化”的过程,体 会分式方程的模型作用。 注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,此时,每位同学 都有了一定的找等量关系的感觉,先让他们自己完成,再小组讨论 第三环节 感悟升华 活动内容: 回顾刚才我们得出的 4 个方程: ( 1 ) ( 2 ) ( 3 ) ( 4 ) 它们和我们以前所碰到的方程一样吗?有什么不一样的地方? 上面所得到的方程有什么共同特点? 方程中的未知数都含在分母中,不是一元一次方程。 这就是我们今天要认识的一种新的方程——分式方程:分母中含有未知数得方程。 分式方程重要特征: (1) 含分母 (2) 分母中含未知数 分式方程与整式方程的区别:分式方程中分母含有未知数,而整式方程中的分母不含有 2400 2400 430x x − =+ 1400 1400 92.8x x − = 1400 14002.8 9y y = × + 4800 5000 20x x = +4 未知数。 活动目的:通过让学生通过观察、归纳、总结出整式方程与分式方程的异同,从而得出 分式方程的概念 注意事项: 注意引导学生理解分式方程重要特征,分清分式方程与整式方程的区别, 第四环节 课堂反馈 活动内容: 1.找找看,下列方程哪些是分式方程: (1) (2) (3) (4) 2.“退耕还林还草”是在我国西部地区实施的一项重要生态工程.某地规划退耕面积共 69000 ,退耕还林与退耕还草的面积比为5∶3.设退耕还林的面积为 x ,那么 x 满足怎样的分式方程? 活动目的:通过学生的反馈练习,考察学生对分式方程概念的理解. 注意事项:引导学生分析题目中的已知量、未知量、等量关系来解决问题,。 活动内容 王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计 共需费用 300 元。后因人数增加到原定人数的 2 倍,费用享受了优惠,一共只需要 480 元,参加活动的每个同学平均分摊的费用比原计划少 4 元,原定的人数是多少?如果设 原定是 x 人,那么 x 满足怎样的分式方程? 活动目的 :由浅入深,出了一道比上题难度大一点的问题。还是为了训练学生找出问 题中的所有等量关系,发展学生分析问题、解决问题的能力。 注意事项:要给学生一定的思考时间,让学生积极投身于问题情景中,努力寻找问题中 的所有等量关系。 第五环节 自我小结 活动内容:从今天的课程中,你学到了哪些知识? 掌握了哪些方法? 活动目的:通过学生的回顾与反思,让学生感受到在实际问题中,一定要找到它的等量 关系,根据等量关系来列方程。 注意事项:小节最好由同学们讨论,教师只是顺势把学生的话进行一个归纳总结。关注 学生从现实生活中发现并提出数学问题的能力,关注学生能否尝试用不同方法寻求问题 1 ( 3)2 x x− = 1 12x = 131 2 x x x − =− − 12 3 x x− = 2hm 2hm5 中数量关系,并用分式方程表示,能否表达自己解决问题的过程 课后作业:完成课本习题 四、教学设计反思 本节课循序渐进,合理设计教学问题系列,有效组织教学活动,既发挥教师的主导 作用,又体现学生的主体地位,较好地完成了教学目标.在本节课堂教学中,学生之所 以能够很快列出分式方程,是因为学生在掌握了列分式和分式计算式的基础上,结合过 去学过的列一元一次方程、二元一次方程组、一元一次不等式(组)、一次函数解应用 题方法等,所以才能很快列出分式方程.在教学形式上采用学生口述、互评等多种方法, 激活学生的思维,营造良好的课堂氛围.

资料: 4978

进入主页

人气:

10000+的老师在这里下载备课资料