#TRS_AUTOADD_1214788589080 {
MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
#TRS_AUTOADD_1214788589080 P {
MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
#TRS_AUTOADD_1214788589080 TD {
MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
#TRS_AUTOADD_1214788589080 DIV {
MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
#TRS_AUTOADD_1214788589080 LI {
MARGIN-TOP: 0px; MARGIN-BOTTOM: 0px
}
/**---JSON--
{"":{"margin-top":"0","margin-bottom":"0"},"p":{"margin-top":"0","margin-bottom":"0"},"td":{"margin-top":"0","margin-bottom":"0"},"div":{"margin-top":"0","margin-bottom":"0"},"li":{"margin-top":"0","margin-bottom":"0"}}
--**/
DIV.MyFav_1214786501981 P.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; LINE-HEIGHT: 15.6pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 LI.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; LINE-HEIGHT: 15.6pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 DIV.MsoNormal{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; LINE-HEIGHT: 15.6pt; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 P.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; LINE-HEIGHT: 12pt; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1214786501981 LI.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; LINE-HEIGHT: 12pt; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1214786501981 DIV.MsoHeader{BORDER-RIGHT: medium none; PADDING-RIGHT: 0cm; BORDER-TOP: medium none; PADDING-LEFT: 0cm; FONT-SIZE: 9pt; PADDING-BOTTOM: 0cm; MARGIN: 0cm 0cm 0pt; BORDER-LEFT: medium none; LAYOUT-GRID-MODE: char; LINE-HEIGHT: 12pt; PADDING-TOP: 0cm; BORDER-BOTTOM: medium none; FONT-FAMILY: "Times New Roman"; TEXT-ALIGN: center}DIV.MyFav_1214786501981 P.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; LINE-HEIGHT: 12pt; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1214786501981 LI.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; LINE-HEIGHT: 12pt; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1214786501981 DIV.MsoFooter{FONT-SIZE: 9pt; MARGIN: 0cm 0cm 0pt; LAYOUT-GRID-MODE: char; LINE-HEIGHT: 12pt; FONT-FAMILY: "Times New Roman"}DIV.MyFav_1214786501981 P.MsoBodyTextIndent{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 14pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 56pt; FONT-FAMILY: 新宋体; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 LI.MsoBodyTextIndent{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 14pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 56pt; FONT-FAMILY: 新宋体; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 DIV.MsoBodyTextIndent{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 14pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 56pt; FONT-FAMILY: 新宋体; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 P.CharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: Verdana; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 LI.CharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: Verdana; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 DIV.CharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharCharChar{TEXT-JUSTIFY: inter-ideograph; FONT-SIZE: 10.5pt; MARGIN: 0cm 0cm 0pt; TEXT-INDENT: 10pt; LINE-HEIGHT: 125%; FONT-FAMILY: Verdana; TEXT-ALIGN: justify}DIV.MyFav_1214786501981 DIV.Section1{page: Section1}
14、D
15、B
16、A
17、B
18、A
19、C
20、D
21、D
22、(16分)
⑴1.880(1.878~1.882均正确)
⑵
⑶
23、(16分)
⑴设粒子过N点的速度为v,有
v=2v0
粒子从M点到N点的过程,有
⑵粒子在磁场中以O′为圆心做匀速圆周运动,半径为O′N,有
⑶由几何关系得:ON = rsinθ
设粒子在电场中运动的时间为t1,有
ON =v0t1
粒子在磁场中做匀速圆周运动的周期
设粒子在磁场中运动的时间为t2,有
t=t1+t2
解得:
24、(18分)
⑴设B在绳被拉断后瞬间的速度为vB,到达C点的速度为vC ,有
解得:v=5 m/s
⑵设弹簧恢复到自然长度时B的速度为v1,取水平向右为正方向,有
I=mBvB-mBv1
解得:I=-4 N·s,其大小为4N·s
⑶设绳断后A的速度为vA,取水平向右为正方向,有
mBv1=mBvB+mAvA
解得:W=8 J
25、(22分)
⑴由于列车速度与磁场平移速度方向相同,导致穿过金属框的磁通量发生变化,由于电磁感应,金属框中会产生感应电流,该电流受到安培力即为驱动力。
⑵为使列车获得最大驱动力,MM、PQ应位于磁场中磁感应强度同为最大值且反向的地方,这会使得金属框所围面积的磁通量变化率最大,导致线框中电流最强,也会使得金属框长边中电流收到的安培力最大,因此,d应为的奇数倍,即
①
⑶由于满足⑵问条件,则MM、PQ边所在处的磁感应强度大小均为B0且方向总相反,经短暂的时间Δt,磁场沿Ox方向平移的距离为v0Δt,同时,金属框沿Ox方向移动的距离为vΔt。
因为v0>v,所以在Δt时间内MN边扫过磁场的面积
S=(v0-v)lΔt
在此Δt时间内,MN边左侧穿过S的磁通量移进金属框而引起框内磁通量变化
ΔΦMN=B0l(v0-v)Δt
同理,该Δt时间内,PQ边左侧移出金属框的磁通引起框内磁通量变化
ΔΦPQ=B0l(v0-v)Δt
故在Δt内金属框所围面积的磁通量变化
ΔΦ=ΔΦMN +ΔΦPQ
根据法拉第电磁感应定律,金属框中的感应电动势大小
根据闭合电路欧姆定律有
根据安培力公式,MN边所受的安培力
FMN=B0Il
PQ边所受的安培力
FPQ=B0Il
根据左手定则,MM、PQ边所受的安培力方向相同,此时列车驱动力的大小
F=FMN+FPQ=2B0Il
联立解得: