2010中考数学热点专题突破训练――应用题
加入VIP免费下载

2010中考数学热点专题突破训练――应用题

ID:133022

大小:62.73 KB

页数:9页

时间:2010-04-16

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2010中考数学热点专题突破训练――应用题 1.南宁市狮山公园计划在健身区铺设广场砖.现有甲、乙两个工程队参加竞标,甲工程队铺设广场砖的造价 (元)与铺设面积 的函数关系如图12所示;乙工程队铺设广场砖的造价 (元)与铺设面积 满足函数关系式: . (1)根据图12写出甲工程队铺设广场砖的造价 (元)与铺设面积 的函数关系式; (2)如果狮山公园铺设广场砖的面积为 ,那么公园应选择哪个工程队施工更合算?  解:(1)当 时,设 ,把 代入上式得: ·················································································································· 2分 当 时,设 ,把 、 代入上式得: ··································································································· 3分 解得: ·········································································································· 4分 ···················································································· 5分 (2)当 时, ················································· 6分 ·············································································· 7分 当 时,即: 得: ··················································································································· 8分 当 时,即: 得: ············································································································· 9分 当 时,即 , 答:当 时,选择甲工程队更合算,当 时,选择乙工程队更合算,当 时,选择两个工程队的花费一样.···························································································································· 10分    2小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位: ),解答下列问题: (1)写出用含x、y的代数式表示的地面总面积; (2)已知客厅面积比卫生间面积多21 2,且地面总面积是卫生间面积的15倍,铺1 2地砖的平均费用为80元,求铺地砖的总费用为多少元?             解:(1)地面总面积为:(6x+2y+18) 2;································································ 4分 (2)由题意,得 ······················································· 6分 解之,得 ····················································································· 8分 ∴地面总面积为:6x+2y+18=6×4+2× +18=45( 2).················· 9分 ∵铺1 2地砖的平均费用为80元, ∴铺地砖的总费用为:45×80=3600(元).············································ 10分   3为迎接“建国60周年”国庆,我市准备用灯饰美化红旗路,需采用A、B两种不同类型的灯笼200个,且B灯笼的个数是A灯笼的 。 (1)求A、B两种灯笼各需多少个? (2)已知A、B两种灯笼的单价分别为40元、60元,则这次美化工程购置灯笼需多少费用? (1)设需 种灯笼 个, 种灯笼 个,根据题意得: ··············································································································· 4分 解得 ·············································································································· 6分 (2)120×40+80×60=9600(元).·············································································· 8分 4图(1)是一扇半开着的办公室门的照片,门框镶嵌在墙体中间,门是向室内开的.图(2)画的是它的一个横断面.虚线表示门完全关好和开到最大限度(由于受到墙角的阻碍,再也开不动了)时的两种情形,这时二者的夹角为120°,从室内看门框露在外面部分的宽为4cm,求室内露出的墙的厚度a的值.(假设该门无论开到什么角度,门和门框之间基本都是无缝的.精确到0.1cm, )   图1)             图(2)              解从图中可以看出,在室内厚为acm的墙面、宽 为4cm的门框及开成120°的门之间构成了一 个直角三角形,且其中有一个角为60°.·········· 3分 从而  a=4×tan60° ············································· 6分 =4× ≈6.9(cm).·································· 8分 即室内露出的墙的厚度约为6.9cm. 5铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍. (1)试销时该品种苹果的进货价是每千克多少元? (2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70﹪)售完,那么超市在这两次苹果销售中共盈利多少元? 解:(1)设试销时这种苹果的进货价是每千克 元,依题意,得······························· (1分) ··············································································· (5分) 解之,得  5···················································································· (6分) 经检验, 5是原方程的解.······························································· (7分) (2)试销时进苹果的数量为:  (千克) 第二次进苹果的数量为:2×1000 2000(千克)········································· (8分) 盈利为:  2600×7+400×7×0.7-5000-11000 4160(元) ······················· (9分) 答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元. ·············································· (10分)    6如图,要设计一个等腰梯形的花坛,花坛上底长 米,下底长 米,上下底相距 米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为 米. (1)用含 的式子表示横向甬道的面积; (2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽; (3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元? .解:(1)横向甬道的面积为: ············································· 2分 (2)依题意: ·············································· 4分 整理得: (不符合题意,舍去)······································································· 6分 甬道的宽为5米. (3)设建设花坛的总费用为 万元. ············································ 7分 当 时, 的值最小.··························································· 8分 因为根据设计的要求,甬道的宽不能超过6米, 米时,总费用最少.······················································································ 9分 最少费用为: 万元·················································· 10分 7(09本溪)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元. (1)求购买每个笔记本和钢笔分别为多少元? (2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买 支钢笔需要花 元,请你求出 与 的函数关系式; (3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱. 解(1)解:设每个笔记本 元,每支钢笔 元.·························································· 1分 ············································································································· 2分 ···································································································· 3分 ···································································································· 4分 解得 答:每个笔记本14元,每支钢笔15元.······································································· 5分 ······························································· 6分 ······························································· 7分 (2)   (3)当 时, ; 当 时, ; 当 时, .···················································································· 8分 综上,当买超过10件但少于15件商品时,买笔记本省钱; 当买15件奖品时,买笔记本和钢笔一样; 当买奖品超过15件时,买钢笔省钱.·········································································· 10分 8如图,等腰梯形花圃ABCD的底边AD靠墙,另三边用长为40米的铁栏杆围成,设该花圃的腰AB的长为x米. (1)请求出底边BC的长(用含x的代数式表示); (2)若∠BAD=60°, 该花圃的面积为S米2. ①求S与x之间的函数关系式(要指出自变量x的取值范围),并求当S= 时x的值; ②如果墙长为24米,试问S有最大值还是最小值?这个值是多少? 解:(1)∵AB=CD=x米,∴BC=40-AB-CD=(40-2x) ……………………………………………………(3分) (2)①如图,过点B、C分别作BE⊥AD于E,CF⊥AD于F,在Rt△ABE中,AB=x,∠BAE=60° ∴AE= x,BE= x.同理DF= x,CF= x 又EF=BC=40-2x ∴AD=AE+EF+DF= x+40-2x+ x=40-x……………………………(4分) ∴S=  (40-2x+40-x)· x= x(80-3x) =  (0<x<20)…………………………………(6分) 当S= 时, = 解得:x1=6,x2= (舍去).∴x=6………………………………(8分) ②由题意,得40-x≤24,解得x≥16, 结合①得16≤x<20………………………………………………………………(9分) 由①,S= = ∵a= <0 ∴函数图象为开口向下的抛物线的一段(附函数图象草图如左). 其对称轴为x= ,∵16> ,由左图可知, 当16≤x<20时,S随x的增大而减小……………………………(11分) ∴当x=16时,S取得最大值,………………………………………(12分) 此时S最大值= .…………………(13分) 9水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下: 得 分 评卷人         第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 售价x(元/千克) 400   250 240 200 150 125 120 销售量y(千克) 30 40 48   60 80 96 100 观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系. (1) 写出这个反比例函数的解析式,并补全表格; (2) 在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出? 解:(1) 函数解析式为 .                                                                      ……2分 填表如下:   第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 售价x(元/千克) 400 300 250 240 200 150 125 120 销售量y(千克) 30 40 48 50 60 80 96 100……2分 (2) 2 104-(30+40+48+50+60+80+96+100)=1 600, 即8天试销后,余下的海产品还有1 600千克.                                ……1分 当x=150时, =80.                                                                  ……2分 1 600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.             ……1分 102009年5月17日至21日,甲型H1N1流感在日本迅速蔓延,每天的新增病例和累计确诊病例人数如图所示. 得 分 评卷人      (1) 在5月17日至5月21日这5天中,日本新增甲型H1N1流感病例最多的是哪一天?该天增加了多少人? 累计确诊病例人数 新增病例人数 0 4 21 96 163 193 267 17 75 67 30 74 16 17 18 19 20 21 日本2009年5月16日至5月21日 甲型H1N1流感疫情数据统计图 人数(人) 0 50 100 150 200 250 300 日期 (2) 在5月17日至5月21日这5天中,日本平均每天新增加甲型H1N1流感确诊病例多少人?如果接下来的5天中,继续按这个平均数增加,那么到5月26日,日本甲型H1N1流感累计确诊病例将会达到多少人? (3) 甲型H1N1流感病毒的传染性极强,某地因1人患了甲型H1N1流感没有及时隔离治疗,经过两天传染后共有9人患了甲型H1N1流感,每天传染中平均一个人传染了几个人?如果按照这个传染速度,再经过5天的传染后,这个地区一共将会有多少人患甲型H1N1流感?  解:(1) 18日新增甲型H1N1流感病例最多,增加了75人;                         ……4分 (2) 平均每天新增加 人,                                                   ……2分 继续按这个平均数增加,到5月26日可达52.6×5+267=530人;               ……2分 (3) 设每天传染中平均一个人传染了x个人,则 , , 解得 (x = -4舍去).                                                                         ……2分 再经过5天的传染后,这个地区患甲型H1N1流感的人数为 (1+2)7=2 187(或1+2+6+18+54+162+486+1 458=2 187), 即一共将会有2 187人患甲型H1N1流感.                                               ……2分  

10000+的老师在这里下载备课资料