2016高考数学一轮数列精品习题(含解析)
加入VIP免费下载

本文件来自资料包: 《2016高考数学一轮数列精品习题(含解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2016高考数学一轮数列精品习题(含解析) ‎ D1 数列的概念与简单表示法 ‎17.D1、D4、D5[2014·江西卷] 已知首项都是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.‎ ‎(1)令cn=,求数列{cn}的通项公式;‎ ‎(2)若bn=3n-1,求数列{an}的前n项和Sn.‎ ‎17.解:(1)因为anbn+1-an+1bn+2bn+1bn=0,bn≠0(n∈N*),所以-=2,即cn+1-cn=2,‎ 所以数列{cn}是以c1=1为首项,d=2为公差的等差数列,故cn=2n-1.‎ ‎(2)由bn=3n-1,知an=(2n-1)3n-1,于是数列{an}的前n项和Sn=1×30+3×31+5×32+…+(2n-1)×3n-1,3Sn=1×31+3×32+…+(2n-3)×3n-1+(2n-1)×3n,将两式相减得-2Sn=1+2×(31+32+…+3n-1)-(2n-1)×3n=-2-(2n-2)×3n,‎ 所以Sn=(n-1)3n+1.‎ ‎17.D1、D2[2014·新课标全国卷Ⅰ] 已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=λSn-1,其中λ为常数.‎ ‎(1)证明:an+2-an=λ.‎ ‎(2)是否存在λ,使得{an}为等差数列?并说明理由.‎ ‎17.解:(1)证明:由题设,anan+1=λSn-1,an+1an+2=λSn+1-1,‎ 两式相减得an+1(an+2-an)=λan+1.‎ 因为an+1≠0,所以an+2-an=λ.‎ ‎(2)由题设,a1=1,a‎1a2=λS1-1,可得 a2=λ-1,‎ 由(1)知,a3=λ+1.‎ 若{an}为等差数列,则‎2a2=a1+a3,解得λ=4,故an+2-an=4.‎ 由此可得{a2n-1}是首项为1,公差为4的等差数列,‎ a2n-1=4n-3;‎ ‎{a2n}是首项为3,公差为4的等差数列,a2n=4n-1.‎ 所以an=2n-1,an+1-an=2.‎ 因此存在λ=4,使得数列{an}为等差数列.‎ ‎17.D1、D3、D5[2014·新课标全国卷Ⅱ] 已知数列{an}满足a1=1,an+1=3an+1.‎ ‎(1)证明是等比数列,并求{an}的通项公式;‎ ‎(2)证明++…+<.‎ ‎17.解:(1)由an+1=3an+1得an+1+=3.‎ 又a1+=,所以是首项为,公比为3的等比数列,所以an+=,因此数列{an}的通项公式为an=.‎ ‎(2)证明:由(1)知=.‎ 因为当n≥1时,3n-1≥2×3n-1,‎ 19‎ 所以≤,即=≤.‎ 于是++…+≤1++…+=

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料