2016高考数学一轮统计专项复习(有解析)
加入VIP免费下载

本文件来自资料包: 《2016高考数学一轮统计专项复习(有解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2016高考数学一轮统计专项复习(有解析) ‎ I1 随机抽样 ‎2.I1[2014·湖南卷] 对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则(  )‎ A.p1=p2<p3 B.p2=p3<p1‎ C.p1=p3<p2 D.p1=p2=p3‎ ‎2.D [解析] 不管是简单随机抽样、系统抽样还是分层抽样,它们都是等概率抽样,每个个体被抽中的概率均为.‎ ‎9.I1[2014·天津卷] 某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.‎ ‎9.60 [解析] 由分层抽样的方法可得,从一年级本科生中抽取学生人数为300×=60.‎ I2 用样本估计总体 ‎6.I2[2014·广东卷] 已知某地区中小学生人数和近视情况分别如图11和图12所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(  )‎ ‎ ‎ ‎  图11          图12‎ A.200,20 B.100,20 ‎ C.200,10 D.100,10‎ ‎6.A [解析] 本题考查统计图表的实际应用.根据图题中的图知该地区中小学生一共有10 000人,由于抽取2%的学生,所以样本容量是10 000×2%=200.由于高中生占了50%,所以高中生近视的人数为2000×2%×50%=20.‎ ‎17.I2、K5[2014·广东卷] 随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.‎ 根据上述数据得到样本的频率分布表如下:‎ 分组 频数 频率 ‎[25,30]‎ ‎3‎ ‎0.12‎ ‎(30,35]‎ ‎5‎ ‎0.20‎ ‎(35,40]‎ ‎8‎ ‎0.32‎ 8‎ ‎(40,45]‎ n1‎ f1‎ ‎(45,50]‎ n2‎ f2‎ ‎(1)确定样本频率分布表中n1,n2,f1和f2的值;‎ ‎(2)根据上述频率分布表,画出样本频率分布直方图;‎ ‎(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.‎ ‎18.I2、K5、K6[2014·辽宁卷] 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图14所示.‎ 图14‎ 将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.‎ ‎(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;‎ ‎(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).‎ ‎18.解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里有连续2天日销售量不低于100个且另1天销售量低于50个”.因此 P(A1)=(0.006+0.004+0.002)×50=0.6,‎ P(A2)=0.003×50=0.15,‎ P(B)=0.6×0.6×0.15×2=0.108.‎ ‎(2)X可能取的值为0,1,2,3,相应的概率分别为 P(X=0)=C·(1-0.6)3=0.064,‎ P(X=1)=C·0.6(1-0.6)2=0.288,‎ P(X=2)=C·0.62(1-0.6)=0.432,‎ P(X=3)=C·0.63=0.216.‎ X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P ‎0.064‎ ‎0.288‎ ‎0.432‎ ‎0.216‎ 因为X~B(3,0.6),所以期望E(X)=3×0.6=1.8,方差D(X)=3×0.6×(1-0.6)=0.72.‎ ‎18.I2、I3[2014·新课标全国卷Ⅰ] 从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如图14所示的频率分布直方图:‎ 8‎ 图14‎ ‎(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);‎ ‎(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数,σ2近似为样本方差s2.‎ ‎(i)利用该正态分布,求P(187.8

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料