2016高考数学一轮推理与证明精品练习(含解析)
加入VIP免费下载

本文件来自资料包: 《2016高考数学一轮推理与证明精品练习(含解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2016高考数学一轮推理与证明精品练习(含解析) ‎ M1 合情推理与演绎推理 ‎8.M1[2014·北京卷] 学生的语文、数学成绩均被评定为三个等级,依次为“优秀”“合格”“不合格”.若学生甲的语文、数学成绩都不低于学生乙,且其中至少有一门成绩高于乙,则称“学生甲比学生乙成绩好”.如果一组学生中没有哪位学生比另一位学生成绩好,并且不存在语文成绩相同、数学成绩也相同的两位学生,那么这组学生最多有(  )‎ A.2人 B.3人 C.4人 D.5人 ‎8.B [解析] 假设A、B两位学生的数学成绩一样,由题意知他们语文成绩不一样,这样他们的语文成绩总有人比另一个人高,语文成绩较高的学生比另一个学生“成绩好”,与已知条件“他们之中没有一个比另一个成绩好”相矛盾.因此,没有任意两位学生数学成绩是相同的.因为数学成绩只有3种,因而学生数量最大为3,即 3位学生的成绩分别为(优秀,不合格)、(合格,合格)、(不合格,优秀)时满足条件.‎ ‎20.M1 E7[2014·北京卷] 对于数对序列P:(a1,b1),(a2,b2),…,(an,bn),记 T1(P)=a1+b1,Tk(P)=bk+max{Tk-1(P),a1+a2+…+ak}(2≤k≤n),‎ 其中max{Tk-1(P),a1+a2+…+ak}表示Tk-1(P)和a1+a2+…+ak两个数中最大的数.‎ ‎(1)对于数对序列P:(2,5),(4,1),求T1(P),T2(P)的值;‎ ‎(2)记m为a,b,c,d四个数中最小的数,对于由两个数对(a,b),(c,d)组成的数对序列P:(a,b),(c,d)和P′:(c,d),(a,b),试分别对m=a和m=d两种情况比较T2(P)和T2(P′)的大小;‎ ‎(3)在由五个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P使T5(P)最小,并写出T5(P)的值.(只需写出结论)‎ ‎20.解:(1)T1(P)=2+5=7,‎ T2(P)=1+max{T1(P),2+4}=1+max{7,6}=8.‎ ‎(2)T2(P)=max{a+b+d,a+c+d},‎ T2(P′)=max{c+d+b,c+a+b}.‎ 当m=a时,T2(P′)=max{c+d+b,c+a+b}=c+d+b.‎ 因为a+b+d≤c+b+d,且a+c+d≤c+b+d,所以T2(P)≤T2(P′).‎ 当m=d时,T2(P′)=max{c+d+b,c+a+b}=c+a+b.‎ 因为a+b+d≤c+a+b,且a+c+d≤c+a+b,所以T2(P)≤T2(P′).‎ 所以无论m=a还是m=d,T2(P)≤T2(P′)都成立.‎ ‎(3)数对序列P:(4,6),(11,11),(16,11),(11,8),(5,2)的T5(P)值最小,‎ T1(P)=10,T2(P)=26,T3(P)=42,T4(P)=50,T5(P)=52.‎ ‎15.A1、M1[2014·福建卷] 若集合{a,b,c,d}={1,2,3,4},且下列四个关系:‎ ‎①a=1;②b≠1;③c=2;④d≠4有且只有一个是正确的,则符合条件的有序数组(a,b,c,d)的个数是________.‎ ‎15.6 [解析] 若①正确,则②③④不正确,可得b≠1不正确,即b=1,与a=1矛盾,故①不正确;‎ 若②正确,则①③④不正确,由④不正确,得d=4;由a≠1,b≠1,c≠2,得满足条件的有序数组为a=3,b=2,c=1,d=4或a=2,b=3,c=1,d=4.‎ 若③正确,则①②④不正确,由④不正确,得d=4;由②不正确,得b=1,则满足条件的有序数组为a=3,b=1,c=2,d=4;‎ 若④正确,则①②③不正确,由②不正确,得b=1,由a≠1,c≠2,d 9‎ ‎≠4,得满足条件的有序数组为a=2,b=1,c=4,d=3或a=3,b=1,c=4,d=2或a=4,b=1,c=3,d=2;‎ 综上所述,满足条件的有序数组的个数为6.‎ ‎19.M1、M3[2014·广东卷] 设数列{an}的前n项和为Sn,满足Sn=2nan+1-3n2-4n,n∈N*,且S3=15.‎ ‎(1)求a1,a2,a3的值;‎ ‎(2)求数列{an}的通项公式.‎ ‎14.M1[2014·新课标全国卷Ⅰ] 甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,‎ 甲说:我去过的城市比乙多,但没去过B城市;‎ 乙说:我没去过C城市;‎ 丙说:我们三人去过同一城市.‎ 由此可判断乙去过的城市为________.‎ ‎14.A [解析] 由于甲没有去过B城市,乙没有去过C城市,但三人去过同一个城市,故三人去过的城市为A城市.又由于甲最多去过两个城市,且去过的城市比乙多,故乙只能去过一个城市,这个城市为A城市.‎ ‎14.M1[2014·陕西卷] 观察分析下表中的数据:‎ 多面体 面数(F)‎ 顶点数(V)‎ 棱数(E)‎ 三棱柱 ‎5‎ ‎6‎ ‎9‎ 五棱锥 ‎6‎ ‎6‎ ‎10‎ 立方体 ‎6‎ ‎8‎ ‎12‎ 猜想一般凸多面体中F,V,E所满足的等式是________.‎ ‎14.F+V-E=2 [解析] 由题中所给的三组数据,可得5+6-9=2,6+6-10=2,6+8-12=2,由此可以猜想出一般凸多面体的顶点数V、面数F及棱数E所满足的等式是F+V-E=2.‎ M2 直接证明与间接证明 ‎4.M2[2014·山东卷] 用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是(  )‎ A. 方程x2+ax+b=0没有实根 ‎ B. 方程x2+ax+b=0至多有一个实根 ‎ C. 方程x2+ax+b=0至多有两个实根 ‎ D. 方程x2+ax+b=0恰好有两个实根 ‎4.A [解析] “方程x2+ax+b=0至少有一个实根”等价于“方程x2+ax+b=0有一个实根或两个实根”,所以该命题的否定是“方程x2+ax+b=0没有实根”.故选A.‎ M3 数学归纳法 ‎21.B11、M3、D5[2014·安徽卷] 设实数c>0,整数p>1,n∈N*.‎ ‎(1)证明:当x>-1且x≠0时,(1+x)p>1+px;‎ ‎(2)数列{an}满足a1>c,an+1=an+a,证明:an>an+1>c.‎ ‎21.证明:(1)用数学归纳法证明如下.‎ ‎①当p=2时,(1+x)2=1+2x+x2>1+2x,原不等式成立.‎ ‎②假设p=k(k≥2,k∈N*)时,不等式(1+x)k>1+kx成立.‎ 9‎ 当p=k+1时,(1+x)k+1=(1+x)(1+x)k>(1+x)(1+kx)=1+(k+1)x+kx2>1+(k+1)x.‎ 所以当p=k+1时,原不等式也成立.‎ 综合①②可得,当x>-1,x≠0时,对一切整数p>1,不等式(1+x)p>1+px均成立.‎ ‎(2)方法一:先用数学归纳法证明an>c.‎ ‎①当n=1时,由题设知a1>c成立.‎ ‎②假设n=k(k≥1,k∈N*)时,不等式ak>c成立.‎ 由an+1=an+a易知an>0,n∈N*.‎ 当n=k+1时,=+a=‎ ‎1+.‎ 由ak>c>0得-1c,‎ 所以当n=k+1时,不等式an>c也成立.‎ 综合①②可得,对一切正整数n,不等式an>c均成立.‎ 再由=1+可得c,n∈N*.‎ 方法二:设f(x)=x+x1-p,x≥c,则xp≥c,‎ 所以f′(x)=+(1-p)x-p=>0.‎ 由此可得,f(x)在[c,+∞)上单调递增,因而,当x>c时,f(x)>f(c)=c.‎ ‎①当n=1时,由a1>c>0,即a>c可知 a2=a1+a=a1c,从而可得a1>a2>c,‎ 故当n=1时,不等式an>an+1>c成立.‎ 9‎ ‎②假设n=k(k≥1,k∈N*)时,不等式ak>ak+1>c成立,则当n=k+1时,f(ak)>f(ak+1)>f(c),‎ 即有ak+1>ak+2>c,‎ 所以当n=k+1时,原不等式也成立.‎ 综合①②可得,对一切正整数n,不等式an>an+1>c均成立.‎ ‎19.M1、M3[2014·广东卷] 设数列{an}的前n项和为Sn,满足Sn=2nan+1-3n2-4n,n∈N*,且S3=15.‎ ‎(1)求a1,a2,a3的值;‎ ‎(2)求数列{an}的通项公式.‎ ‎22.B12、M3[2014·全国卷] 函数f(x)=ln(x+1)-(a>1).‎ ‎(1)讨论f(x)的单调性;‎ ‎(2)设a1=1,an+1=ln(an+1),证明:0,所以f(x)在(-1,0)是增函数;‎ 若x∈(0,a2-‎2a),则f′(x)0,所以f(x)在(a2-‎2a,+∞)是增函数.‎ ‎(2)由(1)知,当a=2时,f(x)在(-1,+∞)是增函数.‎ 当x∈(0,+∞)时,f(x)>f(0)=0,即ln(x+1)>(x>0).‎ 又由(1)知,当a=3时,f(x)在[0,3)是减函数.‎ 当x∈(0,3)时,f(x)

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料