四川省2015届高三数学下学期入学考试试卷(文科有答案)
加入VIP免费下载

本文件来自资料包: 《四川省2015届高三数学下学期入学考试试卷(文科有答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
四川省2015届高三数学下学期入学考试试卷(文科有答案)‎ 一、选择题(本大题10个小题,每题5分,共50分,请将答案涂在答题卷上)‎ ‎1、设集合,,则下列关系中正确的是( ) ‎ A、 B、 ‎ C、 D、‎ ‎2、复数(i是虚数单位)的共轭复数的虚部为( )‎ ‎ A、 B、0 ‎ ‎ C、1 D、2‎ ‎3、已知等差数列的前n项和为,满足( )‎ ‎ A、 B、 ‎ ‎ C、 D、‎ ‎4、一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是( )‎ ‎ A、1 B、‎2 C、3 D、4‎ ‎5、对任意,函数不存在极值点的充要条件是( )‎ ‎ A、 B、 C、或 D、或 ‎6、设,若关于方程的二根分别在区间和内,则的取值范围为 ( )‎ A、 B、 ‎ C、 D、‎ ‎7、已知O是平面上的一个定点,A,B,C,是平面上不共线三个点,动点P满足:‎ ‎,则动点P的轨迹一定通过△ABC的( )‎ ‎ A、内心 B、垂心 C、外心 D、重心 ‎8、设是双曲线的两个焦点, 是上一点,若 - 10 -‎ 且的最小内角为,则的离心率为( ) ‎ A、 B、 C、 D、‎ ‎9、已知函数有且仅有三个公共点,这三个公共点横坐标的最大值为,则等于( )‎ A、 B、 C、 D、‎ ‎10、函数满足,且时,,函数 ‎,则函数在区间内的零点的个数为(  )‎ A、9 B、8 ‎ C、7 D、6‎ 二.填空题(本大题5个小题,每题5分,共25分,请把答案填在答题卷上)‎ 开始 输出 结束 第11题图 是 否 ‎11、阅读右侧程序框图,则输出的数据为________.‎ - 10 -‎ ‎12、已知变量的最大值是 .‎ ‎13、在区间[1,5]上任取一个数,则函数的值域为[-6,-2]的概率是 ‎ ‎14、在矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为 ‎ ‎15、设函数的定义域为R,若存在常数m>0,使对一切实数x均成立,则称为F函数。给出下列函数:①;②;③;④;⑤是定义在R上的奇函数,且满足对一切实数x1、x2均有 。其中是F函数的序号为______________‎ 三.解答题(本大题6个小题,共75分,请把答案填在答题卷上)‎ ‎16、(本小题满分12分)‎ - 10 -‎ 在中,角A、B、C所对的边分别为,。‎ ‎ (1)求角A的大小;‎ ‎ (2)若,D为边BC的中点,求AD的长度。‎ ‎ ‎ ‎17、(本小题满分12分)‎ 已知各项均不相等的等差数列的前四项和成等比.‎ ‎ (1)求数列的通项公式;‎ ‎ (2)设,若恒成立,求实数的最小值.‎ ‎18、(本小题满分12分)‎ 某公司销售、、三款手机,每款手机都有经济型和豪华型两种型号,据统计月份共销售 部手机(具体销售情况见下表)‎ - 10 -‎ 款手机 款手机 款手机 经济型 豪华型 已知在销售部手机中,经济型款手机销售的频率是.‎ ‎(Ⅰ)现用分层抽样的方法在、、三款手机中抽取部,求在款手机中抽取多少部?‎ ‎(Ⅱ)若,求款手机中经济型比豪华型多的概率。‎ ‎19、(本小题满分12分)‎ 三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC.‎ ‎(Ⅰ)证明:平面PAB⊥平面PBC;‎ ‎(Ⅱ)若,PC与侧面APB所成角的余弦值为,PB与底面ABC成60°角,求二面角B―PC―A的大小.‎ ‎20、(本小题满分13分)‎ - 10 -‎ 已知是椭圆: 的焦点,点在椭圆上.‎ ‎(Ⅰ)若的最大值是,求椭圆的离心率;‎ ‎(Ⅱ)设直线与椭圆交于、两点,过、两点分别作椭圆的切线,,且与 交于点, 试问:当变化时,点是否恒在一条定直线上?若是,请写出这条直线方程,并证明你的结论;若不是,说明理由.‎ ‎21、(本小题满分14)‎ 设函数.‎ ‎(I)判断函数的单调性;‎ ‎(II)当对于上恒成立时,求的取值范围;‎ ‎(III)若,且,‎ 证明:‎ 文科数学答案 ‎1-10:CADBA BDCCB - 10 -‎ ‎11、0 12、2 13、 14、 15、①④⑤‎ ‎16、解:(1)‎ ‎-----------6分 ‎(2)‎ ‎---------12分 ‎17、解:(1)设公差为d,由已知得:,联立解得或(舍去)‎ ‎,故 ……5分 ‎(2) ……6分 ‎ ……8分 ‎,,‎ 又,的最大值为12 ………12分 ‎18、解:(Ⅰ) 因为,所以 ………………………………………2分 所以手机的总数为:………………3分 现用分层抽样的方法在在、、三款手机中抽取部手机,应在款手机中抽取手机数为:‎ ‎(部). ……………………5分 - 10 -‎ ‎(Ⅱ)设“款手机中经济型比豪华型多”为事件,款手机中经济型、豪华型手机数记为,‎ 因为,,满足事件的基本事件有:‎ ‎,,,,,,,‎ ‎,,,,共个 事件包含的基本事件为,,,,,,共7个,所以 即款手机中经济型比豪华型多的概率为…………12分 ‎19、(1)证明:∵PA^面ABC,\PA^BC, ∵AB^BC,且PA∩AB=A, \BC^面PAB 而BC Ì 面PBC中,\面PAB^面PBC. ……5分 ‎ 解:(2)过A作 则ÐEFA为B−PC−A的二面角的平面角 ……8分 由PA=,在RtDPBC中,ÐCOB=.‎ RtDPAB中,ÐPBA=60°.\AB=,PB=2,PC=3,\AE== 同理:AF= ,\ÐEFA==, \ÐEFA=60. ………12分 ‎20、解:(Ⅰ)‎ ‎ ………4分 因为的最大值是,所以 ………5分 因此椭圆E的离心率 ………6分 - 10 -‎ ‎(Ⅱ)当变化时,点恒在一条定直线上 ‎ 证明:先证明:椭圆E: ‎ ‎ ‎ 方法一:当设与椭圆E方程联立得:‎ 由 所以,因此切线方程是 ………9分 方法二:不妨设在第一象限,则由 ‎ 得 ,所以 ‎ 因此切线方程是 ………9分 设 则 , ‎ 联立方程,解得 ,又 ,‎ 所以 ‎ 因此 ,当变化时,点恒在一条定直线上。…13分 ‎21、解:(1)‎ - 10 -‎ 当,,在上是增函数;‎ 当时,;‎ 在上是增函数,在上是减函数。(4分)‎ ‎(2)对于上恒成立 由(1)知:时,舍。‎ 当时,,故的取值范围是。(8分)‎ ‎(3)由(2)知:时,,有,有:‎ 令,代入上式 所以.(14分)‎ - 10 -‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料