一、不定项选择题
1、降落伞在匀速下降的过程中遇到水平方向吹来的风,若风速越大,则降落伞( )
A、下落的时间越短
B、下落的时间越长
C、落地时速度越小
D、落地时速度越大
2、关于电荷量,下列说法错误的是( )
A、物体所带电荷可以是任意值
B、物体所带电荷量只能是某些值
C、物体所带电荷量的最小值为
D、一个物体带的正电荷,这是它失去了个电子的缘故
3、在高空匀速水平飞行的飞机,每隔投放一物体,忽略空气影响,则( )
A、这些物体落地前排列在一条直线上
B、这些物体都落在地面上的同一点
C、这些物体落地时速度大小和方向都相同
D、相邻物体在空中距离保持不变
4、设匀速行驶的汽车,发动机功率保持不变,则( )
A、路面越粗糙,汽车行驶得越慢
B、路面越粗糙,汽车行驶得越快
C、在同一路面上,汽车不载货比载货时行驶得快
D、在同一路面上,汽车不载货比载货时行驶得慢
5、如图所示,用手通过弹簧拉着物体沿光滑斜面上滑,下列说法正确的是( )
A、物体只受重力和弹簧的弹力作用,物体和弹簧组成的系统机械能守恒
B、手的拉力做的功,等于物体和弹簧组成的系统机械能的增加量
C、弹簧弹力对物体做的功,等于物体机械能的增加量
D、手的拉力和物体重力做的总功等于物体动能的增加量
6、如图所示,上表面有一段光滑圆弧的质量为M的小车A置于光滑水平面上,有一质量为m的物体B自弧上端自由滑下的同时释放A,则( )
A、在B下滑过程中,B的机械能守恒
B、轨道对B的支持力对B不做功
C、在B下滑的过程中,A和地球组成的系统的机械能增加
D、A、B和地球组成的系统的机械能守恒
7、在光滑水平杆上穿着两个小球、,且,用细线把两小球连起来,当杆绕竖直轴匀速转动时,两小球刚好能与杆保持无相对滑动,如图所示,此时两小球到转轴的距离与之比为( )
A、 B、 C、 D、
8、甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均视为圆轨道,以下判断正确的是( )
A、甲的周期大于乙的周期
B、乙的速度大于第一宇宙速度
C、甲的加速度小于乙的加速度
D、甲在运行时能经过北极的正上方
9、如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速
度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对小球的作用力可能是( )
A、a处为拉力,b处为拉力
B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
10、在一光滑水平面内建立平面直角坐标系,一物体从时刻起,由坐标原点开始运动,其沿x轴和y轴方向运动的速度-时间图像如图甲、乙所示,下列说法中正确的是( )
A、前内物体沿x轴做匀加速直线运动
B、后内物体继续做匀加速直线运动,但加速度沿y轴方向
C、末物体坐标为
D、末物体坐标为
11、如图所示,光滑绝缘的水平地面上有相距为L的点电荷A、B,带电量分别为和,今引人第三个点电荷C,使三个点电荷都处于平衡状态,则C的电荷量和放置的位置是( )
A、,在A左侧距A为L处
B、,在A左侧距A为处
C、,在B右侧距B为L处
D、,在A点右侧距A为处
12、为了对火星及其周围的空间环境进行探测,我国预计于2011年10月发射第一颗火星探测器“萤火一号”,假设探测器“萤火一号”在离火星表面高度分别为和的圆轨道上运动时,周期分别为和,火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G,仅利用以上数据,可以计算出( )
A、火星的质量
B、“萤火一号”的质量
C、火星对“萤火一号”的引力
D、火星表面的重力加速度
13、如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A是受力情况是( )
A、绳的拉力大于物体A的重力
B、绳的拉力等于物体A的重力
C、绳的拉力小于物体A的重力
D、绳的拉力先大于物体A的重力,后变为小于重力
二、实验题
14、在“验证机械能守恒定律”的实验中,打点计时器所用电源的频率为,当地重力加速度的值为,测得所用重物的质量为。
若按实验要求正确地选出纸带进行测量,量得连续三点A、B、C到第一个点的距离如图所示(相邻计数点时间间隔为),那么:
(1)纸带的 端与重物相连(填“左”或“右”);
(2)打点计时器打下计数点B时,物体的速度 ;
(3)从起点O到打下计数点B的过程中重力势能减少量 ,此过程中的物体动能的增加量 ;
(4)通过计算,数值上 (填“”“=”或“”“=”),这是因为
。
(5)实验的结论是 。
三、综合计算题
15、如图所示,用恒力F使一质量为m的物体由静止开始沿水平地面移动的位移为x,力根物体前进的方向的夹角为,物体与地面间的动摩擦因数为,求:
(1)拉力F对物体做功W的大小;
(2)地面对物体的摩擦力的大小;
(3)物体获得的动能。
16、如图所示,实线为某质点平抛轨迹的一部分,测得AB、BC间水平距离,高度差,,求:
(1)质点平抛的初速度为多大?
(2)抛出点到A点的水平距离和竖直距离各为多大?
17、如图所示,在竖直方向上A、B两物体通过劲度系数为k的轻质弹簧相连,A放在水平地面上;B、C两物体通过细绳绕过光滑轻质定滑轮相连,C放在固定的光滑斜面上,斜面倾角为。用手拿住C,使细绳刚刚拉直但无拉力作用,并保证ab段的细绳竖直、cd段的细绳与斜面平行,已知B的质量为m,C的质量为4m,A的质量远大于m,重力加速度为g,细绳与滑轮之间的摩擦力不计,开始时整个系统处于静止状态,释放C后它沿斜面下滑,斜面足够长,求:
(1)当B的速度最大时,弹簧的伸长量;
(2)B的最大速度。
18、1957年第一颗人造卫星上天,开辟了人类宇航的新时代。四十多年来,人类不仅发射了人造地球卫星,还向宇宙空间发射了多个空间探测器。空间探测器要飞向火星等其它行星,甚至飞出太阳系,首先要克服地球对它的引力的作用。理论研究表明,物体在地球附近都受到地球对它的万有引力的作用,具有引力势能,设物体在距地球无限远处的引力势能为零,则引力势能可以表示为,其中G是万有引力常量,M是地球的质量,m是物体的质量,r是物体距地心的距离。现有一个空间探测器随空间站一起绕地球做圆周运动,运行周期为T,要使这个空间探测器从空间站出发,脱离地球的引力作用,至少要对它作多少功?
参考答案:
1、D 2、A 3、AC 4、AC 5、BC 6、CD 7、D 8、AC 9、AB 10、AD
11、C 12、AD 13、A
14、(1)左;(2);
(3),;
(4),这是因为实验中有阻力;
(5)在实验误差允许范围内,机械能守恒
15、(1)由功的公式可得, F的功为。
(2)对物体受力分析知,竖直方向受力平衡,
摩擦力的大小。
(3)由动能定理:,所以 。
16、(1)平抛运动在水平方向上做匀速直线运动,因为AB、BC水平位移相等,可知时间间隔相等,设相等的时间间隔为T.
在竖直方向上:,
根据得:.
则平抛运动的初速度为:.
(2)B点竖直方向上的分速度为:.
则从抛出点到B点的时为:,
则抛出点到A点的时间为:
所以抛出点到A点的水平距离为:.
竖直距离为:。
17、(1)当B的速度最大时,其加速度为零,绳子上的拉力大小为,此时弹簧处于伸长状态,弹簧的伸长量满足,则。
(2)开始时弹簧的压缩量为:,物体B上升的距离以及物体C沿斜面下滑的距离均为,由于,弹簧处于压缩状态和伸长状态时的弹性势能相等,弹簧弹力做功为零,设B物体的最大速度为,由机械能守恒定律得:
由此解得: 。
18、空间探测器绕地球作圆周运动,有:由得,空间站的轨道半径,空间站一起运动时,空间探测器的动能为
随空间站一起运动时,空间探测器具有的机械能为
空间站要脱离地球的引力,机械能最小值为,因此,对探测器做功为。