2018高考数学大一轮讲义--统计与统计案例、概率(文含解析)
加入VIP免费下载

本文件来自资料包: 《2018高考数学大一轮讲义--统计与统计案例、概率(文含解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第1讲 随机抽样 最新考纲 1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.‎ 知 识 梳 理 ‎1.简单随机抽样 ‎(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.‎ ‎(2)最常用的简单随机抽样的方法:抽签法和随机数法.‎ ‎2.系统抽样 ‎(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样.‎ ‎(2)系统抽样的操作步骤 假设要从容量为N的总体中抽取容量为n的样本.‎ ‎①先将总体的N个个体编号;‎ ‎②确定分段间隔k,对编号进行分段,当(n是样本容量)是整数时,取k=;‎ ‎③在第1段用简单随机抽样确定第一个个体编号l(l≤k);‎ ‎④按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.‎ ‎3.分层抽样 ‎(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.‎ ‎(2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.‎ 诊 断 自 测 ‎1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 ‎(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.(  )‎ ‎(2)系统抽样在起始部分抽样时采用简单随机抽样.(  )‎ ‎(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(  )‎ ‎(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(  )‎ 答案 (1)× (2)√ (3)× (4)×‎ ‎2.(必修3P‎100A1改编)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是(  )‎ A.总体 B.个体 C.样本的容量 D.从总体中抽取的一个样本 解析 由题目条件知,5 000名居民的阅读时间的全体是总体;其中1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.‎ 答案 A ‎3.(2015·四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是(  )‎ A.抽签法 B.系统抽样法 C.分层抽样法 D.随机数法 解析 因为总体由有明显差异的几部分构成,所以用分层抽样法.故选C.‎ 答案 C ‎4.(2017·佛山质检)为了解1 000名学生的学习情况,采用系统抽样的方法,从中 抽取容量为40的样本,则分段的间隔为(  )‎ A.50 B‎.40 ‎ C.25 D.20‎ 解析 根据系统抽样的特点分段间隔为=25.‎ 答案 C ‎5.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取男生人数为________.‎ 解析 因为男生与女生的比例为180∶120=3∶2,所以应该抽取男生人数为50×=30.‎ 答案 30‎ 考点一 简单随机抽样及其应用 ‎【例1】 (1)下列抽取样本的方式属于简单随机抽样的个数为(  )‎ ‎①从无限多个个体中抽取100个个体作为样本.‎ ‎②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.‎ ‎③从20件玩具中一次性抽取3件进行质量检验.‎ ‎④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.‎ A.0 B‎.1 ‎ C.2 D.3‎ ‎(2)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为(  )‎ A.08 B‎.07 ‎ C.02 D.01‎ 解析 (1)①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.‎ ‎(2)从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.‎ 答案 (1)A (2)D 规律方法 (1)简单随机抽样是从含有N(有限)个个体的总体中,逐个不放回地抽取样本,且每次抽取时总体内的各个个体被抽到的机会都相等.‎ ‎(2)一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是号签是否易搅匀,一般地,当总体容量和样本容量都较小时可用抽签法.而随机数表法适用于总体中个体数较多的情形:随机数表法的操作要点:编号,选起始数,读数,获取样本.‎ ‎【训练1】 (1)下面的抽样方法是简单随机抽样的是(  )‎ A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖 B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格 C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见 D.用抽签方法从10件产品中选取3件进行质量检验 ‎(2)下列抽样试验中,适合用抽签法的有(  )‎ A.从某厂生产的5 000件产品中抽取600件进行质量检验 B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验 C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验 D.从某厂生产的5 000件产品中抽取10件进行质量检验 解析 (1)A,B选项中为系统抽样,C为分层抽样.‎ ‎(2)A,D中的总体中个体数较多,不适宜抽签法,C中甲、乙两厂的产品质量有区别,也不适宜抽签法,故选B.‎ 答案 (1)D (2)B 考点二 系统抽样及其应用 ‎【例2】 (1)已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11‎ ‎,则第六十一组抽出的号码为________.‎ ‎(2)(2015·湖南卷)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.‎ 若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是(  )‎ A.3 B‎.4 ‎ C.5 D.6‎ 解析 (1)由系统抽样,抽样间隔k==20,由题意知这些号码是以11为首项,20为公差的等差数列,则a61=11+60×20=1 211,故第61组抽取号码为1 211.‎ ‎(2)从35人中用系统抽样方法抽取7人,则可将这35人分成7组,每组5人,从每一组中抽取1人,而成绩在[139,151]上的有4组,所以抽取4人,故选B.‎ 答案 (1)1 211 (2)B 规律方法 (1)如果总体容量N能被样本容量n整除,则抽样间隔为k=,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样,特别注意,每个个体被抽到的机会均是.‎ ‎(2)系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.‎ ‎【训练2】 (1)(2017·郑州模拟)为规范学校办学,某省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是(  )‎ A.13 B‎.19 ‎ C.20 D.51‎ ‎(2)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.‎ 抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为(  )‎ A.7 B‎.9 ‎C.10 D.15‎ 解析 (1)由系统抽样的原理知,抽样的间隔为52÷4=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,即7号,20号,33号,46号.‎ ‎(2)由系统抽样的特点,知抽取号码的间隔为=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.所以做问卷B的有10人.‎ 答案 (1)C (2)C 考点三 分层抽样及其应用 ‎【例3】 (1)(2015·北京卷)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为(  )‎ A.90 B‎.100 ‎ C.180 D.300‎ ‎(2)(2017·唐山调研)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件.‎ 解析 (1)设该样本中的老年教师人数为x,由题意及分层抽样的特点得=,故x=180.‎ ‎(2)由题设,抽样比为=.‎ 设甲设备生产的产品为x件,则=50,∴x=3 000.‎ 故乙设备生产的产品总数为4 800-3 000=1 800.‎ 答案 (1)C (2)1 800‎ 规律方法 (1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.‎ ‎(2)为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与总体的个体数之比,即ni∶Ni=n∶N.分层抽样的有关计算,转化为按比例列方程或算式求解.‎ ‎【训练3】 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n等于(  )‎ A.9 B‎.10 C.12 D.13‎ 解析 依题意得=,故n=13.‎ 答案 D ‎[思想方法]‎ ‎1.三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n,总体容量为N,每个个体被抽到的概率是.‎ ‎2.系统抽样抽取的个体编号从小到大成等差数列.‎ ‎3.分层抽样适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.‎ ‎[易错防范]‎ ‎1.简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样.‎ ‎2.系统抽样中,易忽视抽取的样本数也就是分段的段数,当不是整数时,注意剔除,剔除的个体是随机的.‎ ‎3.分层抽样中,易忽视每层抽取的个体的比例是相同的.‎ 基础巩固题组 ‎(建议用时:25分钟)‎ 一、选择题 ‎1.打桥牌时,将洗好的扑克牌(52张)随机确定一张为起始牌后,开始按次序搬牌,对任何一家来说,都是从52张总体抽取一个13张的样本.这种抽样方法是(  )‎ A.系统抽样 B.分层抽样 C.简单随机抽样 D.非以上三种抽样方法 解析 符合系统抽样的特征.‎ 答案 A ‎2.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是(  )‎ A.简单随机抽样 B.按性别分层抽样 C.按学段分层抽样 D.系统抽样 解析 不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.‎ 答案 C ‎3.(2017·长沙一中测试)某中学有高中生3 500人,初中生1 500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为(  )‎ A.100 B‎.150 ‎ C.200 D.250‎ 解析 法一 由题意可得=,解得n=100.‎ 法二 由题意,抽样比为=,总体容量为3 500+1 500=5 000,故n=5 000×=100.‎ 答案 A ‎4.在一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,‎ p2,p3,则(  )‎ A.p1=p2<p3 B.p2=p3<p1‎ C.p1=p3<p2 D.p1=p2=p3‎ 解析 由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D.‎ 答案 D ‎5.高三·一班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是(  )‎ A.8 B‎.13 ‎ C.15 D.18‎ 解析 分段间隔为=13,故还有一个学生的编号为5+13=18.‎ 答案 D ‎6.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是(  )‎ A.5,10,15,20,25 B.3,13,23,33,43‎ C.1,2,3,4,5 D.2,4,6,16,32‎ 解析 间隔距离为10,故可能编号是3,13,23,33,43.‎ 答案 B ‎7.某市电视台为调查节目收视率,想从全市3个区按人口数用分层抽样的方法抽取一个容量为n的样本.已知3个区人口数之比为2∶3∶5,如果最多的一个区抽出的个体数是60,那么这个样本的容量为(  )‎ A.96 B‎.120 ‎ C.180 D.240‎ 解析 设样本容量为n,则=,解得n=120.‎ 答案 B ‎8.将参加英语口语测试的1 000名学生编号为000,001,002,…,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002,…,019,且第一组随机抽取的编号为015,则抽取的第35个编号为(  )‎ A.700 B‎.669 ‎ C.695 D.676‎ 解析 由题意可知,第一组随机抽取的编号l=15,‎ 分段间隔数k===20,由题意知抽出的这些号码是以15为首项,20为公差的等差数列,则抽取的第35个编号为15+(35-1)×20=695.‎ 答案 C ‎9.(2017·邯郸摸底)某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n人中,抽取35人进行问卷调查.已知高二被抽取的人数为13,则n=(  )‎ A.660 B‎.720 ‎ C.780 D.800‎ 解析 由已知条件,抽样比为=,‎ 从而=,解得n=720.‎ 答案 B 二、填空题 ‎10.(2015·福建卷)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.‎ 解析 设男生抽取x人,则有=,解得x=25.‎ 答案 25‎ ‎11.(2017·郑州调研)从编号为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量是5的样本,若编号为28的产品在样本中,则该样本中产品的最大编号为________.‎ 解析 由系统抽样知,抽样间隔k==16,‎ 因为样本中含编号为28的产品,‎ 则与之相邻的产品编号为12和44.‎ 故所取出的5个编号依次为12,28,44,60,76,即最大编号为76.‎ 答案 76‎ ‎12.央视春晚直播不到20天的时候,某媒体报道,由六小龄童和郭富城合演的《猴戏》节目被毙,为此,某网站针对“是否支持该节目上春晚”‎ 对网民进行调查,得到如下数据:‎ 网民态度 支持 反对 无所谓 人数(单位:人)‎ ‎8 000‎ ‎6 000‎ ‎10 000‎ 若采用分层抽样的方法从中抽取48人进行座谈,则持“支持”态度的网民抽取的人数为________.‎ 解析 持“支持”态度的网民抽取的人数为48×=48×=16.‎ 答案 16‎ 能力提升题组 ‎(建议用时:20分钟)‎ ‎13.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:‎ ‎①7,34,61,88,115,142,169,196,223,250;‎ ‎②5,9,100,107,111,121,180,195,200,265;‎ ‎③11,38,65,92,119,146,173,200,227,254;‎ ‎④30,57,84,111,138,165,192,219,246,270.‎ 关于上述样本的下列结论中,正确的是(  )‎ A.②、③都不能为系统抽样   B.②、④都不能为分层抽样 C.①、④都可能为系统抽样   D.①、③都可能为分层抽样 解析 ①在1~108之间有4个,109~189之间有3个,190~270之间有3个,符合分层抽样的规律,可能是分层抽样.同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的;同理③符合分层抽样的规律,可能是分层抽样,同时,从第二个数据起每个数据与前一个的差都为27,符合系统抽样的规律,则可能是系统抽样得到的,故选D.‎ 答案 D ‎14.某城市修建经济适用房.已知甲、乙、丙三个社区分别有低收入家庭360户、270户、180户,若首批经济适用房中有90套住房用于解决住房紧张问题,采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为(  )‎ A.40 B‎.36 ‎ C.30 D.20‎ 解析 利用分层抽样的比例关系,‎ 设从乙社区抽取n户,则=.‎ 解得n=30.‎ 答案 C ‎15.福利彩票“双色球”中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为(  )‎ A.23 B‎.09 ‎ C.02 D.17‎ 解析 从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,故选出的第6个红色球的编号为02.‎ 答案 C ‎16.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为007,032,则样本中最大的编号应该为(  )‎ A.480 B‎.481 ‎C.482 D.483‎ 解析 根据系统抽样的定义可知样本的编号成等差数列,令a1=7,a2=32,d=25,所以7+25(n-1)≤500,所以n≤20,最大编号为7+25×19=482.‎ 答案 C ‎17.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600‎ 名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为(  )‎ A.26,16,8 B.25,17,8‎ C.25,16,9 D.24,17,9‎ 解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).‎ 令3+12(k-1)≤300得k≤,因此第Ⅰ营区被抽中的人数是25;令3000,∴y与x正相关,∴A正确;‎ ‎∵回归直线经过样本点的中心(,),∴B正确;‎ ‎∵Δy=0.85(x+1)-85.71-(0.85x-85.71)=0.85,‎ ‎∴C正确.‎ 答案 D ‎4.通过随机询问110名性别不同的学生是否爱好某项运动,得到如下的列联表:‎ 男 女 总计 爱好 ‎40‎ ‎20‎ ‎60‎ 不爱好 ‎20‎ ‎30‎ ‎50‎ 总计 ‎60‎ ‎50‎ ‎110‎ 由K2=算得,‎ K2=≈7.8.‎ 附表:‎ P(K2≥k0)‎ ‎0.050‎ ‎0.010‎ ‎0.001‎ k0‎ ‎3.841‎ ‎6.635‎ ‎10.828‎ 参照附表,得到的正确结论是(  )‎ A.有99%以上的把握认为“爱好该项运动与性别有关”‎ B.有99%以上的把握认为“爱好该项运动与性别无关”‎ C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”‎ D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”‎ 解析 根据独立性检验的定义,由K2≈7.8>6.635,可知我们在犯错误的概率不超过0.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”.‎ 答案 A ‎5.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:‎ 收入x(万元)‎ ‎8.2‎ ‎8.6‎ ‎10.0‎ ‎11.3‎ ‎11.9‎ 支出y(万元)‎ ‎6.2‎ ‎7.5‎ ‎8.0‎ ‎8.5‎ ‎9.8‎ 根据上表可得回归直线方程=x+,其中=0.76,=-,据此估计,该社区一户年收入为15万元家庭的年支出为(  )‎ A.11.4万元 B.11.8万元 C.12.0万元 D.12.2万元 解析 由题意知,==10,‎ ==8,‎ ‎∴=8-0.76×10=0.4,‎ ‎∴当x=15时,=0.76×15+0.4=11.8(万元).‎ 答案 B 二、填空题 ‎6.若8名学生的身高和体重数据如下表:‎ 编号 ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ 身高/cm ‎165‎ ‎165‎ ‎157‎ ‎170‎ ‎175‎ ‎165‎ ‎155‎ ‎170‎ 体重/kg ‎48‎ ‎57‎ ‎54‎ ‎64‎ ‎61‎ ‎43‎ ‎59‎ 第3名学生的体重漏填,但线性回归方程是=0.849x-85.712,则第3名学生的体重估计为________.‎ 解析 设第3名学生的体重为a,则 (48+57+a+54+64+61+43+59)=0.849×(165+165+157+170+175+‎ ‎165+155+170)-85.712.‎ 解之得a≈50.‎ 答案 50‎ ‎7.(2017·广州模拟)为了判断高中三年级学生选修文理科是否与性别有关,现随机抽取50名学生,得到2×2列联表如下:‎ 理科 文科 总计 男 ‎13‎ ‎10‎ ‎23‎ 女 ‎7‎ ‎20‎ ‎27‎ 总计 ‎20‎ ‎30‎ ‎50‎ 已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.‎ 根据表中数据,得到K2=≈4.844,则认为选修文理科与性别有关系出错的可能性约为________.‎ 解析 由K2=4.844>3.841.故认为选修文理科与性别有关系出错的可能性约为5%.‎ 答案 5%‎ ‎8.某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:‎ 气温(℃)‎ ‎18‎ ‎13‎ ‎10‎ ‎-1‎ 用电量(度)‎ ‎24‎ ‎34‎ ‎38‎ ‎64‎ 由表中数据得回归直线方程=x+中的=-2,预测当气温为-‎4 ℃‎时,用电量约为________度.‎ 解析 根据题意知==10,==40,因为回归直线过样本点的中心,所以=40-(-2)×10=60,所以当x=-4时,y=‎ ‎(-2)×(-4)+60=68,所以用电量约为68度.‎ 答案 68‎ 三、解答题 ‎9.(2017·郑州调研)某地区2009年至2015年农村居民家庭人均纯收入y(单位:千元)的数据如下表:‎ 年份 ‎2009‎ ‎2010‎ ‎2011‎ ‎2012‎ ‎2013‎ ‎2014‎ ‎2015‎ 年份代号t ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎6‎ ‎7‎ 人均纯收入y ‎2.9‎ ‎3.3‎ ‎3.6‎ ‎4.4‎ ‎4.8‎ ‎5.2‎ ‎5.9‎ ‎(1)求y关于t的线性回归方程;‎ ‎(2)利用(1)中的回归方程,分析2009年至2015年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2017年农村居民家庭人均纯收入.‎ 附:回归直线的斜率和截距的最小二乘估计公式分别为:‎ =,=-.‎ 解 (1)由所给数据计算得=(1+2+3+4+5+6+7)=4,‎ =×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,‎ (ti-)2=9+4+1+0+1+4+9=28,‎ (ti-)(yi-)=(-3)×(-1.4)+(-2)×(-1)+‎ ‎(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,‎ ===0.5,‎ =-=4.3-0.5×4=2.3,‎ 所求回归方程为=0.5t+2.3.‎ ‎(2)由(1)知,=0.5>0,故2009至2015年该地区农村居民家庭人均纯收入逐年增加,平均每年约增加0.5千元.‎ 将2017年的年份代号t=9代入(1)中的回归方程,得=0.5×9+2.3=6.8,故预测该地区2017年农村居民家庭人均纯收入为6.8千元.‎ ‎10.(2017·西安质检)某省会城市地铁将于2017年6‎ 月开始运营,为此召开了一个价格听证会,拟定价格后又进行了一次调查,随机抽查了50人,他们的收入与态度如下:‎ 月收入(单位:百元)‎ ‎[15,25)‎ ‎[25,35)‎ ‎[35,45)‎ ‎[45,55)‎ ‎[55,65)‎ ‎[65,75]‎ 赞成定价者人数 ‎1‎ ‎2‎ ‎3‎ ‎5‎ ‎3‎ ‎4‎ 认为价格偏高者人数 ‎4‎ ‎8‎ ‎12‎ ‎5‎ ‎2‎ ‎1‎ ‎(1)若以区间的中点值为该区间内的人均月收入,求参与调查的人员中“赞成定价者”与“认为价格偏高者”的月平均收入的差距是多少(结果保留2位小数);‎ ‎(2)由以上统计数据填下面2×2列联表分析是否有99%的把握认为“月收入以55百元为分界点对地铁定价的态度有差异”.‎ 月收入不低于 ‎55百元的人数 月收入低于 ‎55百元的人数 总计 认为价格偏高者 赞成定价者 总计 附:K2= P(K2≥k0)‎ ‎0.05‎ ‎0.01‎ k0‎ ‎3.841‎ ‎6.635‎ 解 (1)“赞成定价者”的月平均收入为 x1=≈50.56.‎ ‎“认为价格偏高者”的月平均收入为 x2==38.75,‎ ‎∴“赞成定价者”与“认为价格偏高者”的月平均收入的差距是x1-x2=50.56-38.75=11.81(百元).‎ ‎(2)根据条件可得2×2列联表如下:‎ 月收入不低于 月收入低于 总计 ‎55百元的人数 ‎55百元的人数 认为价格偏高者 ‎3‎ ‎29‎ ‎32‎ 赞成定价者 ‎7‎ ‎11‎ ‎18‎ 总计 ‎10‎ ‎40‎ ‎50‎ K2=≈6.270,>0 B.>0,

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料