七年级数学下1.5平方差公式习题(北师大有答案)
加入VIP免费下载

本文件来自资料包: 《七年级数学下1.5平方差公式习题(北师大有答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎《平方差公式》习题 一、选择题 ‎1.计算:(a+2)(a-2)的结果是( )‎ A.a2+4 B.a2‎-4 C.2a-4 D‎.2a ‎2.计算(a+1)2(a-1)2的结果是( )‎ A.a4-1 B.a4+‎1 C.a4+‎2a2+1 D.a4‎-2a2+1‎ ‎3.计算:a2-(a+1)(a-1)的结果是( )‎ A.1 B.‎-1 C.2a2+1 D‎.2a2-1‎ ‎4.计算(a4+b4)(a2+b2)(b-a)(a+b)的结果是( )‎ A.a8-b8 B.a6-b‎6 C.b8-a8 D.b6-a6‎ 二、填空题 ‎5.(a2+1)(a+1)(_____)=a4-1.‎ ‎6.观察下列各式:(a-1)(a+1)=a2-1,(a-1)(a2+a+1)=a3-1,(a-1)(a3+a2+a+1)=a4-1…根据前面各式的规律计算:(a-1)(a4+a3+a2+a+1)=_____;22012+22011+…+22+2+1=_____.‎ ‎7.(a+1)(a-1)(1-a2)=_____.‎ ‎8.(x-_____-3)(x+2y-_____)=[(_____)-2y][(_____)+2y]‎ ‎9.(x+2y-3)(x-2y-3)=_____-_____.‎ ‎10.若x2-y2=48,x+y=6,则3x-3y=_____.‎ 三、解答题 ‎11. 计算: ( a-2b ) ( -2b-a ) . ‎ ‎12.已知:x+y=6,xy=4.(1)求x2+y2的值;(2)求(x-y)2的值;(3)求x4+y4的值 ‎13.若x2+y2=86,xy=-16,求(x-y)2.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎14.已知:x2+xy+y=14,y2+xy+x=28,求x+y的值.‎ ‎15.知(m+n)2=10,(m-n)2=2,求 m4+n4 的值.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 参考答案 一、选择题 ‎1.答案:B 解析:【解答】(a+2)(a-2)=a2-22=a2-4.故选B ‎【分析】根据平方差公式展开,即可求出答案.‎ ‎2.答案:D 解析:【解答】(a+1)2(a-1)2=[(a+1)(a-1)]2=(a2-1)2=a4‎-2a2+1.故选D.‎ ‎【分析】此题首先利用积的乘方公式把所求代数式变为[(a+1)(a-1)]2,然后利用平方差公式化简,再利用完全平方公式即可求出结果. ‎ ‎3.答案:A 解析:【解答】a2-(a+1)(a-1)=a2-(a2-1)=a2-a2+1=1.故选A.‎ ‎【分析】先利用平方差公式计算,再根据整式的加减运算法则,计算后直接选取答案.‎ ‎4.答案:C 解析:【解答】(a4+b4)(a2+b2)(b-a)(a+b)=(a4+b4)(a2+b2)(b2-a2) =(a4+b4)(b4-a4)=b8-a8.故选C.‎ ‎【分析】多次运用平方差公式计算即可.‎ 二、填空题 ‎5.答案:(a-1)‎ 解析:【解答】a4-1=(a2+1)(a2-1)=(a2+1)(a+1)(a-1).‎ ‎【分析】根据平方差公式的运算即可得出答案.‎ ‎6.答案:a5-1 22013-1‎ 解析:【解答】(a-1)(a4+a3+a2+a+1)=a5-1; 22012+22011+…+22+2+1=1×(22012+22011+…+22+2+1)=(2-1)(22012+22011+…+22+2+1)=22013-1.‎ ‎【分析】根据题目信息,可得:(a-1)(an+an-1+an-2+…+a2+a+1)=an+1-1,由此计算即可.‎ ‎7.答案:-a4+‎2a2-1‎ 解析:【解答】(a+1)(a-1)(1-a2)=( a2-1)(1-a2)=-a4+‎2a2-1;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】根据平方差公式分别进行计算,再合并同类项即可求出答案.‎ ‎8.答案:2y 3 x-3 x-3 ‎ 解析:【解答】(x-2y-3)(x+2y-3)=[(x-3)-2y][(x-3)+2y].‎ ‎【分析】本题是平方差公式的应用,通过左右对照,相同项是x-3;相反项是-2y,2y.填空即可.‎ ‎9.答案:(x-3)2 (2y)2.‎ 解析:【解答】(x+2y-3)(x-2y-3)=(x-3)2-(2y)2.‎ ‎【分析】根据平方差公式计算.‎ ‎10.答案:24.‎ 解析:【解答】x2-y2=(x+y)(x-y)=48, ∵x+y=6,∴x-y=8, 则3x-3y=3(x-y)=3×8=24.‎ ‎【分析】先按照平方差公式把x2-y2=48写成(x+y)(x-y)=48的形式,再由x+y=6得出x-y的值,然后把3x-3y写成3(x-y)的形式,最好把x-y的值代入即可.‎ 三、解答题 ‎11.答案:1,12.‎ 解析:【解答】原式=(-2b)2-a2 =4b2-a2.‎ ‎【分析】 此题是-2b与a这两个数的和与这两个数的差相乘的积, 符合平方差公 式, 所以就等于这两数的平方差.‎ ‎12.答案:(1)28;(2)20;(3)368.‎ 解析:【解答】∵x+y=6,xy=4, ∴(1)x2+y2=(x+y)2-2xy=62-2×4=28; (2)(x-y)2=x2+y2-2xy=28-2×4=20; (3)x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2=202-2×42=368.‎ ‎【分析】(1)利用x2+y2=(x+y)2-2xy计算即可; (2)利用(x-y)2=x2+y2-2xy计算即可; (3)利用x4+y4=(x2+y2)2-2x2y2=(x2+y2)2-2(xy)2计算即可.‎ ‎13.答案:118.‎ 解析:【解答】∵(x-y)2=x2+y2-2xy,且x2+y2=86,xy=-16, ∴(x-y)2=86-2×(-16)=118.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】根据完全平方公式得到(x-y)2=x2+y2-2xy,然后把x2+y2=86,xy=-16代入计算即可.‎ ‎14.答案:x+y=-7或x+y=6.‎ 解析:【解答】x2+xy+y=14①,y2+xy+x=28②, ∴①+②,得:x2+2xy+y2+x+y=42, ∴(x+y)2+(x+y)-42=0, ∴(x+y+7)(x+y-6)=0, ∴x+y+7=0或x+y-6=0, 解得:x+y=-7或x+y=6.‎ ‎【分析】由x2+xy+y=14,y2+xy+x=28,即可求得x2+2xy+y2+x+y=42,则变形得(x+y)2+(x+y)-42=0,将x+y看作整体,利用因式分解法即可求得x+y的值.‎ ‎15.答案:28.‎ 解析:【解答】(m+n)2=10,(m-n)2=2, ∴m2+2mn+n2=10,m2-2mn+n2=2, 相减得:4mn=8, ∴2mn=4, ∴m4+n4 =(m2+n2)2-2(mn)2 =[(m+n)2-2mn]2-8 =[10-4]2-8 =36-8 =28.‎ ‎【分析】根据已知求出2mn的值,把m4+n4化成含有(m+n)2和2mn的形式,代入即可.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料