周周练
(9.1
~
9.2)
(
时间:
45
分钟 满分:
100
分
)
一、选择题
(
每小题
4
分,共
32
分
)
1
.
(
宿州校级月考
)
下列说法中,错误的是
( )
A
.不等式
x
<
5
的整数解有无数多个
B
.不等式
x
>-
5
的负整数解集有限个
C
.不等式-
2x
<
8
的解集是
x
<-
4
D
.-
40
是不等式
2x
<-
8
的一个解
2
.
(
襄阳中考
)
在数轴上表示不等式
2(1
-
x)8 B
.
a
+
3
>
8
C
.
a
+
3
≥
8 D
.
a
+
3
≤
8
4
.设
a
,
b
,
c
表示三种不同物体的质量,用天平秤两次,情况如图所示,则这三种物体的质量从小到大排列正确的是
( )
A
.
c
<
b
<
a B
.
b
<
c
<
a
C
.
c
<
a
<
b D
.
b
<
a
<
c
A
C
5
.
(
遵义中考
)
三个连续正整数的和小于
39
,这样的正整数中,最大一组的和是
( )
A
.
39 B
.
36 C
.
35 D
.
34
6
.
(
锦州中考
)
已知
a
>
b
>
0
,下列结论错误的是
( )
7
.关于
x
的不等式-
2x
+
a
≥
2
的解集如图所示,则
a
的值是
( )
A
.
0 B
.
2 C
.-
2 D
.
4
A
C
B
8
.
(
台湾中考
)
图为歌神
KTV
的两种计费方案说明.若晓莉和朋友们打算在此
KTV
的一间包厢里连续欢唱
6
小时,经服务生试算后,告知他们选择包厢计费方案会比人数计费方案便宜,则在同一间包厢里欢唱的人数至少有
( )
A
.
6
人
B
.
7
人
C
.
8
人
D
.
9
人
C
人数计费方案:
每人欢唱
3
小时
540
元,
接着续唱每人每小时
80
元.
包厢计费方案:
包厢每间每小时
900
元,
每人须另付入场费
99
元.
二、填空题
(
每小题
3
分,共
18
分
)
9
.
(
榆林校级月考
)
若
(m
+
1)x
|m|
+
2
>
0
是关于
x
的一元一次不等式,则
m
=
____
.
12
.若
a
<
0
,则不等式
ax
-
b
≥
0
的解集是
1
a
<
2
13
.
(
新疆中考
)
对一个实数
x
按如图所示的程序进行操作,规定:程序运行从“输入一个实数
x
”到“结果是否大于
88
?”为一次操作.如果操作只进行一次就停止,那么
x
的取值范围是
_________
.
14
.
(
泰兴市期末
)
甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得
3
分,平一场得
1
分,负一场得
0
分,两队一共比赛了
10
场,甲队保持不败,得分不低于
24
分,甲队至少胜了
_____
场.
x
>
49
7
三、解答题
(
共
50
分
)
15
.
(8
分
)
解下列不等式,并将其解集在数轴上表示出来.
(1)8x
-
1
≥
6x
+
3
;
解:移项,得
8x
-
6x
≥
3
+
1.
合并同类项,得
2x
≥
4.
系数化为
1
,得
x
≥
2.
其解集在数轴上表示为:
17
.
(6
分
)
关于
x
的方程
kx
-
1
=
2x
的解为正实数,求
k
的取值范围.
解:由题意得
2x
-
(3
-
x)
>
0.
去括号,得
2x
-
3
+
x
>
0.
移项合并同类项,得
3x
>
3.
把
x
的系数化为
1
,得
x
>
1.
20
.
(12
分
)
某市某中学要印制本校高中招生的录取通知书,有两个印刷厂前来联系制作业务.甲厂的优惠条件是:按每份定价
1.5
元的八折收费,另收
900
元制版费;乙厂的优惠条件是:每份定价
1.5
元的价格不变,而制版费
900
元六折优惠.且甲、乙两厂都规定:一次印刷数至少是
500
份.如何根据印刷的数量选择比较合算的方案?如果这个中学要印制
2 000
份录取通知书,那么应选择哪个厂?需要多少费用?
解:设印刷数量
x
份,则
当
1.2x
+
900
=
1.5x
+
540
,此时
x
=
1 200.
∴当印刷数量
x
=
1 200
份时,两个印刷厂费用一样,二者任选其一.
当
1.2x
+
900
<
1.5x
+
540
,此时
x
>
1 200.
∴当印刷数量
x
>
1 200
份时,选择甲印刷厂费用少,比较合算.
当
1.2x
+
900
>
1.5x
+
540
,此时
500
≤
x
<
1 200.
∴当印刷数量
500
≤
x
<
1 200
份时,选择乙印刷厂费用少,比较合算.
当印制
2 000
份时,选择甲印刷厂比较合算.所需费用
y
甲
=
1.2
×
2 000
+
900
=
3 300(
元
)
.
∴如果要印制
2 000
份录取通知书,应选择甲印刷厂,需要
3 300
元.