由莲山课件提供http://www.5ykj.com/ 资源全部免费
2015-2016学年江西省赣州市兴国县八年级(下)期末数学试卷
一、选择题(每小题3分,共18分)
1.下列二次根式中,不能与合并的是( )
A. B. C. D.
2.一次函数y=x+3的图象与x轴交点的坐标是( )
A.(0,﹣3) B.(0,3) C.(3,0) D.(﹣3,0)
3.用固定的速度往如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是
( )
A. B. C. D.
4.在2016年我县中小学经典诵读比赛中,10个参赛单位成绩统计如图所示,对于这10个参赛单位的成绩,下列说法中错误的是( )
A.众数是90 B.平均数是90 C.中位数是90 D.极差是15
5.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.20° B.25° C.30° D.35°
6.一次函数y=x﹣1的图象经过平移后经过点(﹣4,2),此时函数图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
二、填空题(每小题3分,共18分)
7.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 .
8.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 ,使四边形AECF是平行四边形(只填一个即可).
9.如图,AB=AC,则数轴上点C所表示的数为 .
10.已知△ABC的三边长a,b,c满足+|b﹣2|+(c﹣2)2=0,则△ABC一定是 三角形.
11.函数=+的自变量x的取值范围为 .
12.如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(每题6分,共30分)
13.(1)化简: ++﹣15
(2)计算:(3+)2﹣2.
14.已知函数y=(2m+1)x+m﹣2.
(1)若函数图象经过原点,求m的值;
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
15.如图,等边△ABC和等边△ECD的边长相等,BC与CD在同一直线上,请根据如下要求,使用无刻度的直尺画图.
(1)在图①中画一个直角三角形;
(2)在图②中画出∠ACE的平分线.
16.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24,△OAB的周长是18,试求EF的长.
17.如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,试求BC的长.
四、本大题共4小题,每小题8分,共32分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.2016年我县某校有若干名学生参加了七年级数学期末测试,学校随机抽取了考生总数的10%的学生数学成绩,现将他们的成绩分成:A(96分~120分)、B(84分~95分)、C(72分~83分)、D(72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:
(1)在所抽取的考生中,若D级只有3人:
①请估算该校所有考生中,约有多少人数学成绩是D级?
②考生数学成绩的中位数落在 等级中;
(2)有一位同学在计算所抽取的考生数学成绩的平均数时,其方法是:
=÷4=76.25,问这位同学的计算正确吗?若不正确,请你帮他计算正确的平均数.
19.如图所示是鼎龙高速路口开往宁都方向的某汽车行驶的路程s(km)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:
(1)汽车在前6分钟内的平均速度是 千米/小时,汽车在兴国服务区停了多长时间? 分钟;
(2)当10≤t≤20时,求S与t的函数关系式;
(3)规定:高速公路时速超过120千米/小时为超速行驶,试判断当10≤t≤20时,该汽车是否超速,说明理由.
20.如图,已知四边形ABCD是正方形,点B,C分别在两条直线y=2x和y=kx上,点A,D是x轴上两点.
(1)若此正方形边长为2,k= ;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化说明理由;若会发生变化,试求出a的值.
21.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
五、本大题共1题,10分
22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
六、本大题共1题,12分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/件)与上市时间x(单位:天)的函数关系如图2所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2015-2016学年江西省赣州市兴国县八年级(下)期末数学试卷
参考答案与试题解析
一、选择题(每小题3分,共18分)
1.下列二次根式中,不能与合并的是( )
A. B. C. D.
【考点】同类二次根式.
【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.
【解答】解:A、,故A能与合并;
B、,故B能与合并;
C、,故C不能与合并;
D、,故D能与合并;
故选:C.
2.一次函数y=x+3的图象与x轴交点的坐标是( )
A.(0,﹣3) B.(0,3) C.(3,0) D.(﹣3,0)
【考点】一次函数图象上点的坐标特征.
【分析】根据x轴上点的坐标特征,计算函数值为0时所对应的自变量的值即可得到一次函数与x轴的交点坐标.
【解答】解:当y=0时,x+3=0,解得x=﹣3,
所以一次函数与x轴的交点坐标是(﹣3,0).
故选D
3.用固定的速度往如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
( )
A. B. C. D.
【考点】函数的图象.
【分析】结合瓶子的结构和题意知,容器的截面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断.
【解答】解:因瓶子下面窄上面宽,
且相同的时间内注入的水量相同,
所以下面的高度增加的快,
上面增加的慢,
即图象应越来越缓,
分析四个图象只有C符合要求.
故选C.
4.在2016年我县中小学经典诵读比赛中,10个参赛单位成绩统计如图所示,对于这10个参赛单位的成绩,下列说法中错误的是( )
A.众数是90 B.平均数是90 C.中位数是90 D.极差是15
【考点】极差;折线统计图;算术平均数;中位数;众数.
【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.
【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故C正确;
∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故B错误;
极差是:95﹣80=15;故D正确.
综上所述,B选项符合题意,
故选B.
5.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于( )
A.20° B.25° C.30° D.35°
【考点】平行四边形的性质;三角形内角和定理;等腰三角形的性质.
【分析】要求∠DAE,就要先求出∠ADE,要求出∠ADE,就要先求出∠DBC.利用DB=DC,C=70°即可求出.
【解答】解:∵DB=DC,∠C=70°
∴∠DBC=∠C=70°,
又∵AD∥BC,
∴∠ADE=∠DBC=70°
∵AE⊥BD
∴∠AEB=90°那么∠DAE=90°﹣∠ADE=20°
故选A.
6.一次函数y=x﹣1的图象经过平移后经过点(﹣4,2),此时函数图象不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【考点】一次函数图象与几何变换.
【分析】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
设平移后所得直线的解析式为y=x﹣1﹣m,由该直线过点(﹣4,2)即可得出关于m的一元一次方程,解方程求出m的值,由此可得出平移后所得直线的解析式,再根据一次函数图象与系数的关系可得出该直线经过第一、二、三象限,由此即可得出结论.
【解答】解:设平移后所得直线的解析式为y=x﹣1﹣m,
∴点(﹣4,2)在直线y=x﹣1﹣m上,
∴2=﹣4﹣1﹣m,解得:m=﹣7,
∴平移后所得直线的解析式为y=x+6.
∵k=1>0,b=6>0,
∴直线y=x+6的图象经过第一、二、三象限,
故选D.
二、填空题(每小题3分,共18分)
7.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是 小林 .
【考点】方差;折线统计图.
【分析】观察图象可得:小明的成绩较集中,波动较小,即方差较小;故小明的成绩较为稳定;根据题意,一般新手的成绩不太稳定,故新手是小林.
【解答】解:由于小林的成绩波动较大,根据方差的意义知,波动越大,成绩越不稳定,故新手是小林.
故填小林.
8.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件 AF=CE ,使四边形AECF是平行四边形(只填一个即可).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】平行四边形的判定与性质.
【分析】根据平行四边形性质得出AD∥BC,得出AF∥CE,根据有一组对边相等且平行的四边形是平行四边形推出即可.
【解答】解:添加的条件是AF=CE.理由是:
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴AF∥CE,
∵AF=CE,
∴四边形AECF是平行四边形.
故答案为:AF=CE.
9.如图,AB=AC,则数轴上点C所表示的数为 ﹣1 .
【考点】勾股定理;实数与数轴.
【分析】根据勾股定理列式求出AB的长,即为AC的长,再根据数轴上的点的表示解答.
【解答】解:由勾股定理得,AB==,
∴AC=,
∵点A表示的数是﹣1,
∴点C表示的数是﹣1.
故答案为:﹣1.
10.已知△ABC的三边长a,b,c满足+|b﹣2|+(c﹣2)2=0,则△ABC一定是 等腰直角 三角形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根.
【分析】先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.
【解答】解:∵△ABC的三边长a、b、c满足+|b﹣2|+(c﹣2)2=0,
∴a﹣2=0,b﹣2=0,c﹣=0,
∴a=2,b=2,c=2.
∵a2+b2=c2,
∴△ABC一定是等腰直角三角形.
故答案为:等腰直角;
11.函数=+的自变量x的取值范围为 x≥1且x≠5 .
【考点】函数自变量的取值范围.
【分析】根据分式有意义的条件和二次根式有意义的条件列出不等式组,求解即可.
【解答】解:∵x﹣1≥0且x﹣5≠0,
∴x≥1且x≠5,
故答案为x≥1且x≠5.
12.如图,▱ABCD中,AB=2,BC=4,∠B=60°,点P是四边形上的一个动点,则当△PBC为直角三角形时,BP的长为 2或2或 .
【考点】平行四边形的性质.
【分析】分两种情况:(1)①当∠BPC=90°时,作AM⊥BC于M,求出BM=AB=1,AM=BM=,由勾股定理求出AC,由勾股定理的逆定理证出△ABC是直角三角形,∠BAC=90°,得出点P与A重合即可;
②当∠BPC=90°,点P在边AD上,CP=CD=AB=2时,由勾股定理求出BP即可;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)当∠BCP=90°时,CP=AM=,由勾股定理求出BP即可.
【解答】解:分两种情况:
(1)①当∠BPC=90°时,
作AM⊥BC于M,如图1所示,
∵∠B=60°,
∴∠BAM=30°,
∴BM=AB=1,
∴AM=BM=,CM=BC﹣BM=4﹣1=3,
∴AC==2,
∴AB2+AC2=BC2,
∴△ABC是直角三角形,∠BAC=90°,
∴当点P与A重合时,∠BPC=∠BAC=90°,
∴BP=BA=2;
②当∠BPC=90°,
点P在边AD上,CP=CD=AB=2时,
BP===2;
(2)当∠BCP=90°时,如图3所示:
则CP=AM=,
∴BP==;
综上所述:当△PBC为直角三角形时,BP的长为 2或2或.
.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(每题6分,共30分)
13.(1)化简: ++﹣15
(2)计算:(3+)2﹣2.
【考点】二次根式的混合运算.
【分析】(1)各项化为最简后,合并同类二次根式即可得到结果;
(2)先根据乘法公式计算出(3+)2的值,然后合并同类二次根式即可.
【解答】(1)解: ++﹣15
=2+3+﹣5
=
(2)解:(3+)2﹣2
=9+6+5﹣2
=14+4.
14.已知函数y=(2m+1)x+m﹣2.
(1)若函数图象经过原点,求m的值;
(2)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.
【考点】一次函数图象与系数的关系;一次函数的定义.
【分析】(1)根据函数图象经过原点可知m+2=0,求出m的值即可;
(2)根据y随着x的增大而减小可知2m+1<0,求出m的取值范围即可.
【解答】解:(1)∵函数图象经过原点,
∴m﹣2=0,解得m=2;
(2)∵y随x的增大而减小,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴2m+1<0,解得m<﹣.
15.如图,等边△ABC和等边△ECD的边长相等,BC与CD在同一直线上,请根据如下要求,使用无刻度的直尺画图.
(1)在图①中画一个直角三角形;
(2)在图②中画出∠ACE的平分线.
【考点】作图—应用与设计作图.
【分析】(1)直接利用等边三角形的性质结合菱形的性质得出△ABD为直角三角形,同理可知,△BED也为直角三角形;
(2)利用菱形的判定与性质得出△AFG≌△EFH,得出FG=FH,进而结合角平分线的判定得出答案.
【解答】解:(1)如图①所示:连接AE,
∵△ABC与△ECD全等且为等边三角形,
∴四边形ACDE为菱形,连接AD,则AD平分∠EDC,
∴∠ADC=30°,
∵∠ABC=60°,
∴∠BAD=90°,
则△ABD为直角三角形,同理可知,△BED也为直角三角形;
(2)如图②所示:连接AE、BE、AD,则四边形ABCE和四边形ACDE为菱形,
则AC⊥BE,AD⊥CE,设BE,AD相交于F,AC交BE于点G,CE交AD于点H,
则FG⊥AC,FH⊥BC,
由(1)得:∠BEC=∠DAC,∠AEF=∠EAF,
则AF=EF,
在△AFG和△EFH中
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
,
∴△AFG≌△EFH(AAS),
∴FG=FH,
由到角两边距离相等的点在角平分线上,可知,连接CF,GF为所作的角平分线.
16.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24,△OAB的周长是18,试求EF的长.
【考点】平行四边形的性质;三角形中位线定理.
【分析】根据平行四边形的性质可知OA=OC=AC,OB=OD=BD,求出OB+OA=12,求出AB的长,由三角形中位线定理即可得出EF的长
【解答】解:∵四边形ABCD是平行四边形
∴AO=CO,BO=DO,
∵AC+BD=24,
∴AO+BO=12,
∵△OAB的周长是18,
∴AB=18﹣(AO+BO)=18﹣12=6,
∵点E,F分别是线段AO,BO的中点
∴EF=AB=3.
17.如图,已知∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,试求BC的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】勾股定理.
【分析】首先由直角三角形ABD中,∠BAD=30°,得BD=AD=6,则由已知得AC=BD=6,再由勾股定理求出AB,然后由直角三角形ACB运用勾股定理求出BC.
【解答】解:∵∠ABD=∠C=90°,AD=12,AC=BD,∠BAD=30°,
∴BD=AD=×12=6,
∴AC=BD=6,
在直角三角形ABD中,根据勾股定理得:
AB==6,
在直角三角形ACB中,根据勾股定理得:
BC==6.
四、本大题共4小题,每小题8分,共32分
18.2016年我县某校有若干名学生参加了七年级数学期末测试,学校随机抽取了考生总数的10%的学生数学成绩,现将他们的成绩分成:A(96分~120分)、B(84分~95分)、C(72分~83分)、D(72分以下)四个等级进行分析,并根据成绩得到如下两个统计图:
(1)在所抽取的考生中,若D级只有3人:
①请估算该校所有考生中,约有多少人数学成绩是D级?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
②考生数学成绩的中位数落在 B 等级中;
(2)有一位同学在计算所抽取的考生数学成绩的平均数时,其方法是:
=÷4=76.25,问这位同学的计算正确吗?若不正确,请你帮他计算正确的平均数.
【考点】条形统计图;用样本估计总体;扇形统计图;中位数.
【分析】(1)①根据扇形统计图中所提供的数据计算即可;②有所抽取的考生数为3÷10%=30人分别算出各等级的人数即可求出考生数学成绩的中位数落在B等级中;
(2)不正确,设抽取的考生数为n,利用加权平均数来求.
【解答】解:(1)①D级的人数比:100%﹣30%﹣40%﹣20%=10%,
所抽取的考生数:3÷10%=30人,
该校考生总数:30÷0.10=300人,
∴该校所有考生中约有300×10%=30人数学成绩是D级;
②∵所抽取的考生数为3÷10%=30人,
∴A级人数30×30%=9人,B级人数30×40%=12人,C级人数30×20%=6人,D级3人,
∴考生数学成绩的中位数落在B等级中;
故答案为:B;
(2)不正确,设抽取的考生数为n,
则==86.5,
答:正确的平均数为86.5分.
19.如图所示是鼎龙高速路口开往宁都方向的某汽车行驶的路程s(km)与时间t(分钟)的函数关系图,观察图中所提供的信息,解答下列问题:
(1)汽车在前6分钟内的平均速度是 90 千米/小时,汽车在兴国服务区停了多长时间? 4 分钟;
(2)当10≤t≤20时,求S与t的函数关系式;
(3)规定:高速公路时速超过120千米/小时为超速行驶,试判断当10≤t≤
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20时,该汽车是否超速,说明理由.
【考点】一次函数的应用.
【分析】(1)根据“速度=路程÷时间”即可算出该汽车前6分钟的平均速度,再根据函数图象中与x轴平行的线段端点所对应的时间即可得出结论;
(2)设S与t的函数关系式为S=kt+b,在函数图象上找出点的坐标,利用待定系数法求出函数关系式即可;
(3)根据“速度=路程÷时间”算出当10≤t≤20时,该汽车的速度,再与120千米/小时进行比较即可得出结论.
【解答】解:(1)6分钟=小时,
汽车在前6分钟内的平均速度为:9÷=90(千米/小时);
汽车在兴国服务区停留的时间为:10﹣6=4(分钟).
故答案为:90;4.
(2)设S与t的函数关系式为S=kt+b,
∵点(10,9),(20,27)在该函数图象上,
∴,解得:,
∴当10≤t≤20时,S与t的函数关系式为S=1.8t﹣9.
(3)当10≤t≤20时,该汽车的速度为:(27﹣9)÷(20﹣10)×60=108(千米/小时),
∵108<120,
∴当10≤t≤20时,该汽车没有超速.
20.如图,已知四边形ABCD是正方形,点B,C分别在两条直线y=2x和y=kx上,点A,D是x轴上两点.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)若此正方形边长为2,k= ;
(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化说明理由;若会发生变化,试求出a的值.
【考点】一次函数图象上点的坐标特征;正方形的性质.
【分析】根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.
【解答】解:(1)∵正方形边长为2,
∴AB=2,
在直线y=2x中,当y=2时,x=1,
∴OA=1,OD=1+2=3,
∴C(3,2),
将C(3,2)代入y=kx,得2=3k,
∴k=;
故答案为:;
(2)k的值不会发生变化,
理由:∵正方形边长为a,
∴AB=a,
在直线y=2x中,当y=a时,x=,
∴OA=,OD=,
∴C(,a),
将C(,a)代入y=kx,得a=k×,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴k=.
21.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
【考点】平行四边形的性质.
【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;
(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.
【解答】(1)证明:∵AE为∠ADB的平分线,
∴∠DAE=∠BAE.
∵四边形ABCD是平行四边形,
∴AD∥BC,CD=AB.
∴∠DAE=∠E.
∴∠BAE=∠E.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AB=BE.
∴CD=BE.
(2)解:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠BAF=∠DFA.
∴∠DAF=∠DFA.
∴DA=DF.
∵F为DC的中点,AB=4,
∴DF=CF=DA=2.
∵DG⊥AE,DG=1,
∴AG=GF.
∴AG=.
∴AF=2AG=2.
在△ADF和△ECF中,,
∴△ADF≌△ECF(AAS).
∴AF=EF,
∴AE=2AF=4.
五、本大题共1题,10分
22.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=8,CF=6,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【考点】矩形的判定;平行线的性质;等腰三角形的判定与性质.
【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;
(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;
(3)根据平行四边形的判定以及矩形的判定得出即可.
【解答】:(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,
∴∠2=∠5,∠4=∠6,
∵MN∥BC,
∴∠1=∠5,∠3=∠6,
∴∠1=∠2,∠3=∠4,
∴EO=CO,FO=CO,
∴OE=OF;
(2)解:∵∠2=∠5,∠4=∠6,
∴∠2+∠4=∠5+∠6=90°,
∵CE=8,CF=6,
∴EF==10,
∴OC=EF=5;
(3)答:当点O在边AC上运动到AC中点时,四边形AECF是矩形.
证明:当O为AC的中点时,AO=CO,
∵EO=FO,
∴四边形AECF是平行四边形,
∵∠ECF=90°,
∴平行四边形AECF是矩形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
六、本大题共1题,12分
23.李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/件)与上市时间x(单位:天)的函数关系如图2所示.
(1)观察图象,直接写出日销售量的最大值;
(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;
(3)试比较第10天与第12天的销售金额哪天多?
【考点】一次函数的应用.
【分析】(1)观察函数图象,找出拐点坐标即可得出结论;
(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,分0≤x≤12和12<x≤20,找出图象上点的坐标,利用待定系数法即可求出函数解析式;
(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,找出在5≤x≤15图象上点的坐标,利用待定系数法求出z关于x的函数解析式,分别代入x=10、x=12求出y与z得值,二者相乘后比较即可得出结论.
【解答】解:(1)观察图象,发现当x=12时,y=120为最大值,
∴日销售量的最大值为120千克.
(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当0≤x≤12时,有,解得:,
∴此时日销售量y与上市时间x的函数解析式为y=10x;
当12<x≤20时,有,解得:,
∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.
综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.
(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,
当5≤x≤15时,有,解得:,
∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.
当x=10时,y=10×10=100,z=﹣2×10+42=22,
当天的销售金额为:100×22=2200(元);
当x=12时,y=10×12=120,z=﹣2×12+42=18,
当天的销售金额为:120×18=2160(元).
∵2200>2160,
∴第10天的销售金额多.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年2月18日
由莲山课件提供http://www.5ykj.com/ 资源全部免费