由莲山课件提供http://www.5ykj.com/ 资源全部免费
第17章 一元二次方程 单元测试卷
一、选择题(每题3分,共30分)
1.下列方程:
①2x2-=1;②2x2-5xy+y2=0;③4x2-1=0;④x2+2x=x2-1;⑤ax2+bx+c=0中,属于一元二次方程的有( )
A.1个 B.2个 C.3个 D.4个
2.方程x2-5x=0的解为( )
A.x1=1,x2=5 B. x1=0,x2=1
C. x1=0,x2=5 D. x1=,x2=5
3.关于x的一元二次方程x2+(m-2)x+m+1=0有两个相等的实数根,则m的值是( )
A.0 B.8 C.4±2 D.0或8
4.解方程3(x-2)2=2x-4所用方法最简便的是( )
A.配方法 B.公式法 C.因式分解法 D.都一样
5.若关于x的方程x2+(m+1)x+=0的一个实数根的倒数恰是它本身,则m的值是( )
A.- B. C.-或 D.1
6.张君同学在验算某数的平方时,将这个数的平方误写成了它的2倍,使答案少了35,则这个数是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.-7 B.-5或7 C.5或7 D.7
7.某省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是( )
A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5
C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5
8.若3与-2am是同类项,则m的值为( )
A.2 B.3 C.2或3 D.-2或-3
9.已知M=a-1,N=a2-a(a为任意实数),则M,N的大小关系为( )
A.MN D.不能确定
10.给出一运算:对于函数y=xn,规定y'=nxn-1.例如:若函数y=x4,则有y'=4x3.已知函数y=x3,则方程y'=12的解是( )
A.x1=4,x2=-4 B.x1=2,x2=-2
C.x1=x2=0 D.x1=2,x2=-2
二、填空题(每题4分,共16分)
11.若2x+1与2x-1互为倒数,则实数x=_______________.
12.已知关于x的方程x2-2x-k=0有两个相等的实数根,则k的值为_______________.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
13.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个符合题意的一元二次方程: _______________.
14.方程x2+2kx+k2-2k+1=0的两个实数根x1,x2满足+=4,则k的值为_______________.
三、解答题(15~22题每题8分,23题10分,共74分)
15.解下列方程:
(1)8x2-6=2x2-5x; (2)(2x+1)(2x+3)=15.
16.关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根.
(1)求m的取值范围;
(2)写出一个满足条件的m的值,并求此时方程的根.
17.已知:关于x的方程x2-2mx=-m2+2x的两个实数根x1,x2满足|x1|=x2,求实数m的值.
18.近期猪肉价格不断走高,引起了民众与政府的高度关注.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当市场猪肉的平均价格达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.
(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%,某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?
(2)5月20日猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在5月20日每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.
19.商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1
元,商场平均每天可多售出2件.设每件商品降价x元.据此规律,请回
答:
(1)商场日销售量增加_______________件,每件商品盈利_______________元(用含x的代数式表示);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2 100元?
20.如图,在长为10 cm,宽为8 cm的长方形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原长方形面积的80%,求截去的小正方形的边长.
21.2013年,东营市某楼盘以每平方米6 500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5 265元.
(1)求平均每年下调的百分率;
(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)
22.已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
x1,x2.
(1)求实数k的取值范围.
(2)是否存在实数k使得x1·x2--≥0成立?若存在,请求出k的值;若不存在,请说明理由.
23.请阅读下列材料:
问题:已知方程x2+x-1=0,求一个一元二次方程,使它的根分别是已知方程根的2倍.
解:设所求方程的根为y,则y=2x,所以x=.
把x=代入已知方程,得+-1=0.
化简,得y2+2y-4=0.故所求方程为y2+2y-4=0.
这种利用方程根的代换求新方程的方法,我们称为“换根法”.
请用阅读材料提供的“换根法”求新方程(要求:将所求方程化为一般形式).
(1)已知方程x2+x-2=0,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为: ;
(2)已知关于x的一元二次方程ax2+bx+c=0(a≠0)有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案
一、1.【答案】A 2.【答案】C
3.【答案】D
解:根据题意得,(m-2)2-4(m+1)=0,解得m1=0,m2=8,故选D.
4.【答案】C 5.【答案】C
6.【答案】B
解:设这个数为x,根据题意得x2=2x+35,解得x=-5或x=7.
7.【答案】C
8.【答案】C
解:由题意可得m2-4m+6=m,解得m1=2,m2=3.
9.【答案】A 10.【答案】B
二、11.【答案】±
12.【答案】-3 13.【答案】(答案不唯一)x2-5x+6=0
14.【答案】1
三、15.解:(1)8x2-6=2x2-5x,整理为6x2+5x-6=0,∴(3x-2)(2x+3)=0,即3x-2=0或2x+3=0,∴原方程的解为x1=,x2=-.(2)(2x+1)(2x+3)=15,整理得4x2+6x+2x+3=15,即4x2+8x-12=0,即
x2+2x-3=0,∴(x+3)(x-1)=0,∴x+3=0或x-1=0,∴原方程的解为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
x1=-3,x2=1.
16.解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2-1=0有两个不相等的实数根,
∴Δ=(2m+1)2-4×1×(m2-1)=4m+5>0,
解得m>-.
(2)(答案不唯一)m=1,此时原方程为x2+3x=0,
即x(x+3)=0,解得x1=0,x2=-3.
17.解:原方程可变形为x2-2(m+1)x+m2=0.∵x1,x2是方程的两个根,∴Δ≥0,即4(m+1)2-4m2≥0,∴8m+4≥0,∴m≥-.又x1,x2满足|x1|=x2,∴x1=x2或x1=-x2,即Δ=0或x1+x2=0,由Δ=0,即8m+4=0,得m=-.由x1+x2=0,即2(m+1)=0,得m=-1(不合题意,舍去).∴当|x1|=x2时,m的值为-.
18.解:(1)设今年年初猪肉的价格为每千克x元.根据题意,得2.5×(1+60%)x≥100.解得x≥25.
答:今年年初猪肉的最低价格为每千克25元.
(2)设5月20日该超市猪肉的销售量为1,根据题意,得
40×(1+a%)+40(1-a%)×(1+a%)=40(1+a%).令a%=y,
原方程可化为40×(1+y)+40(1-y)×(1+y)=40(1+y).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
整理这个方程,得5y2-y=0.
解这个方程,得y1=0,y2=0.2.
∴a1=0(不合题意,舍去),a2=20.
答:a的值为20.
19.解:(1)2x;(50-x)
(2)由题意得(50-x)(30+2x)=2 100,化简得x2-35x+300=0,解得x1=15,x2=20.∵该商场为了尽快减少库存,∴x=15不合题意,舍去,∴x=20.
答:每件商品降价20元时,商场日盈利可达2 100元.
20.解:设截去的小正方形的边长为x cm,由题意得10×8-4x2=80%×10×8,
解得x1=2,x2=-2(不合题意,舍去).
所以x=2.
答:截去的小正方形的边长为2 cm.
21.解:(1)设平均每年下调的百分率为x,根据题意,得
6 500(1-x)2=5 265.
解得x1=0.1=10%,x2=1.9(不合题意,舍去).
答:平均每年下调的百分率为10%.
(2)如果下调的百分率相同,2016年的房价为
5 265×(1-10%)=4 738.5(元/平方米).
则100平方米的住房的总房款为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
100×4 738.5=473 850(元)=47.385(万元).
∵20+30>47.385,∴张强的愿望能实现.
22.解:(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,∴4k2+4k+1-4k2-8k≥0,∴1-4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.
(2)假设存在实数k使得x1·x2--≥0成立.
∵x1,x2是原方程的两个实数根,∴x1+x2=2k+1,x1·x2=k2+2k.由x1·x2--≥0,得3x1·x2-(x1+x2)2≥0.∴3(k2+2k)-(2k+1)2≥0,整理得-(k-1)2≥0,∴只有当k=1时,上式才能成立.又由(1)知k≤,∴不存在实数k使得x1·x2--≥0成立.
23.解:(1)y2-y-2=0 (2)设所求方程的根为y,则y=(x≠0),于是x=(y≠0),把x=代入方程ax2+bx+c=0,得a+b·+c=0.去分母,得a+by+cy2=0.若c=0,则ax2+bx=0,于是方程ax2+bx+c=0有一个根为0,不符合题意,∴c≠0,故所求方程为cy2+by+a=0(c≠0).
由莲山课件提供http://www.5ykj.com/ 资源全部免费