由莲山课件提供http://www.5ykj.com/ 资源全部免费
1.3 解直角三角形 同步练习
一、单选题
1、如图,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,cosA=, 则下列结论中正确的个数为( )
①DE=3cm;②EB=1cm;③S菱形ABCD=15cm2
A、3个
B、2个
C、1个
D、0个
2、如图,在菱形ABCD中,∠ABC=60°,AC=4,则BD的长为( )
A、2
B、4
C、8
D、8
3、如图是某商场一楼与二楼之间的手扶电梯示意图.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8 m,则乘电梯从点B到点C上升的高度h是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A、m
B、4 m
C、m
D、8 m
4、如图,在菱形ABCD中,DE⊥AB,cosA=, BE=2,则tan∠DBE的值( )
A、
B、2
C、
D、
5、如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A、
B、
C、
D、
6、在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值是
A、
B、
C、
D、
7、某水坝的坡度i=1:, 坡长AB=20米,则坝的高度为( )
A、10米
B、20米
C、40米
D、20米
8、一斜坡长为米,高度为1米,那么坡比为( )
A、1:3
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B、1:
C、1:
D、1:
9、如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,若∠a=75°,则b的值为 ( )
A、3
B、
C、
D、
10、如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PA+PC的最小值为
A、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
B、
C、
D、2
11、在△ABC中,∠A,∠B均为锐角,且sinA=, cosB=, AC=40,则△ABC的面积是( )
A、800
B、800
C、400
D、400
12、如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为( )
A、3
B、4
C、5
D、6
13、小明利用测角
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为( )
A、
B、
C、
D、
14、一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为( )
A、75cm2
B、(25+25)cm2
C、(25+)cm2
D、(25+)cm2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为( )
A、
B、
C、
D、3
二、填空题
16、在Rt△ABC中,∠A=90°,AB=2,若sinC=, 则BC的长度为________
17、已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是________.
18、如图,在平行四边形ABCD中,AD=5cm, AP=8cm, AP平分∠DAB,交DC于点P,过点B作BE⊥AD于点E,BE交AP于点F,则tan∠BFP=________
19、如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=, 则CD=________
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20、如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC边上的F处,M是AF的中点,连接BM,则sin∠ABM=________.
三、解答题
21、如图,矩形ABCD的对角线AC.BD相交于点O , 过点O作OE⊥AC交AD于E , 若AB=6,AD=8,求sin∠OEA的值 .
22、如图的斜边AB=5,cosA=
(1)用尺规作图作线段AC的垂直平分线(保留作图痕迹,不要求写作法、证明);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)若直线与AB,AC分别相交于D,E两点,求DE的长
23、如图是一座人行天桥的示意图,天桥的高度是10米,CB⊥DB , 坡面AC的倾斜角为45° . 为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面DC的坡度为i= :3 . 若新坡角下需留3米宽的人行道,问离原坡角(A点处)10米的建筑物是否需要拆除?(参考数据: ≈1.414, ≈1.732)
24、如图,在△ABC中,∠ACB=90°,D为AC上一点,DE⊥AB于点E,AC=12,BC=5.
(1)求cos∠ADE的值;
(2)当DE=DC时,求AD的长.
25、如图,已知抛物线与x轴交于A、B两点,点C是抛物线在第一象限内部分的一个动点,点D是OC的中点,连接BD并延长,交AC于点E.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)说明:;
(2)当点C、点A到y轴距离相等时,求点E坐标.
(3)当的面积为时,求的值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答案部分
一、单选题
1、
【答案】A
2、
【答案】B
3、
【答案】B
4、
【答案】B
5、
【答案】A
6、
【答案】C
7、
【答案】A
8、
【答案】A
9、
【答案】C
10、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】B
11、
【答案】D
12、
【答案】B
13、
【答案】A
14、
【答案】C
15、
【答案】B
二、填空题
16、
【答案】10
17、
【答案】
18、
【答案】
19、
【答案】
20、
【答案】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题
21、
【答案】解:连接EC ,
∵四边形ABCD为矩形,
∴OA=OC , ∠ABC=90°,
利用勾股定理得:AC= =10,即OA=5,
∵OE⊥AC ,
∴AE=CE ,
在Rt△EDC中,设EC=AE=x , 则有ED=AD-AE=8-x , DC=AB=6,
根据勾股定理得:x2=(8-x)2+62,
解得:x= ,
∴AE= ,
在Rt△AOE中,sin∠OEA= .
22、
【答案】解:(1)作图
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)因为直线垂直平分线段AC,所以CE=AE,
又因为BCAC,所以DE//BC,
所以DE=BC.
因为在中,AB=5,cosA=,
所以AC=ABcosA=,BC=4
得DE=2.
23、
【答案】解:需要拆除,理由为:
∵CB⊥AB , ∠CAB=45°,
∴△ABC为等腰直角三角形,
∴AB=BC=10米,
在Rt△BCD中,新坡面DC的坡度为i= :3,即∠CDB=30°,
∴DC=2BC=20米,BD= 米,
∴AD=BD-AB=(10 -10)米≈7.32米,
∵3+7.32=10.32>10,
∴需要拆除 .
24、
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【答案】解:(1)∵DE⊥AB,
∴∠DEA=90°,
∴∠A+∠ADE=90°,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠ADE=∠B,
在Rt△ABC中,∵AC=12,BC=5,
∴AB=13,
∴,
∴;
(2)由(1)得,
设AD为x,则,
∵AC=AD+CD=12,
∴,
解得,
∴.
25、
【答案】解:(1)令y=0,则有-x2+2x+8=0.
解得:x1=-2,x2=4
∴OA=2,OB=4.
过点O作OG∥AC交BE于G
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴△CEG∽△OGD
∴
∵DC=DO
∴CE=0G
∵OG∥AC
∴△BOG∽△BAE
∴
∵OB=4,OA=2
∴;
(2)由(1)知A(-2,0),且点C、点A到y轴的距离相等,
∴C(2,8)
设AC所在直线解析式为:y=kx+b
把 A 、C两点坐标代入求得k=2,b=4
所以y=2x+4
分别过E、C作EF⊥x轴,CH⊥x轴,垂足分别为F、H
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由△AEF∽△ACH可求EF=,OF=,
∴E点坐标为(,)
(3)连接OE
∵D是OC的中点,
∴S△OCE=2S△CED
∵S△OCE:S△AOC=CE:CA=2:5
∴S△CED:S△AOC=1:5.
∴S△AOC=5S△CED=8
∴
∴CH=8
由莲山课件提供http://www.5ykj.com/ 资源全部免费