由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年河北省中考数学模拟试卷(3)
一、选择题(本大题共16个小题,共42分)
1.﹣的倒数的绝对值是( )
A.﹣2017 B. C.2017 D.
2.下列计算中,结果是a6的是( )
A.a2+a4 B.a2•a3 C.a12÷a2 D.(a2)3
3.如图是一个正方体纸盒的外表面展开图,则这个正方体是( )
A. B. C. D.
4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( )
A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
5.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
A. B. C. D.
6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( )
A.甲组 B.乙组 C.丙组 D.丁组
7.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.0 B.1 C.2 D.3
8.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为( )
A.π B.π C. D.
9.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0
10.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.点C B.点D或点E
C.线段DE(异于端点) 上一点 D.线段CD(异于端点) 上一点
11.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm B.15cm C.10cm D.20cm
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:
①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正确的个数有( )
A.1 B.2 C.3 D.4
13.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )
A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10
14.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是( )
A.0 B.2 C.3 D.4
15.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为( )
A.(0,0) B.(1,) C.(,) D.(,)
16.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为( )
A. B. C. D.
二、填空题(本大题共有3个小题,共10分)
17.|﹣0.3|的相反数等于 .
18.把多项式a2﹣4a分解因式为 .
19.有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….
(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是 ;
(2)上列式子中第n个式子为 (n为正整数).
三、解答题(本大题共7个小题,共68分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)
第一次
第二次
第三次
第四次
x
x﹣5
2(9﹣x)
(1)说出这辆出租车每次行驶的方向.
(2)求经过连续4次行驶后,这辆出租车所在的位置.
(3)这辆出租车一共行驶了多少路程?
21.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.
(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?
(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?
22.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
23.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h
(1)求甲车的速度;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.
24.如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证: AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.
25.如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.
(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;
(2)求A、B两点的坐标;
(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.综合与实践
问题情境
在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.
操作发现
(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是 ;
(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;
实践探究
(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;
(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年河北省中考数学模拟试卷(3)
参考答案与试题解析
一、选择题(本大题共16个小题,共42分)
1.﹣的倒数的绝对值是( )
A.﹣2017 B. C.2017 D.
【考点】倒数;绝对值.
【分析】根据倒数的定义可先求得其倒数,再计算其绝对值即可.
【解答】解:
∵﹣的倒数为﹣2017,
∴﹣的倒数的绝对值为|﹣2017|=2017,
故选C.
2.下列计算中,结果是a6的是( )
A.a2+a4 B.a2•a3 C.a12÷a2 D.(a2)3
【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.
【分析】A:根据合并同类项的方法判断即可.
B:根据同底数幂的乘法法则计算即可.
C:根据同底数幂的除法法则计算即可.
D:幂的乘方的计算法则:(am)n=amn(m,n是正整数),据此判断即可.
【解答】解:∵a2+a4≠a6,
∴选项A的结果不是a6;
∵a2•a3=a5,
∴选项B的结果不是a6;
∵a12÷a2=a10,
∴选项C的结果不是a6;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵(a2)3=a6,
∴选项D的结果是a6.
故选:D.
3.如图是一个正方体纸盒的外表面展开图,则这个正方体是( )
A. B. C. D.
【考点】几何体的展开图.
【分析】根据几何体的展开图先判断出实心圆点与空心圆点的关系,进而可得出结论.
【解答】解:∵由图可知,实心圆点与空心圆点一定在紧相邻的三个侧面上,
∴C符合题意.
故选C.
4.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为( )
A.7.6×10﹣9 B.7.6×10﹣8 C.7.6×109 D.7.6×108
【考点】科学记数法—表示较小的数.
【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,
故选:B.
5.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.
【考点】关于原点对称的点的坐标;在数轴上表示不等式的解集.
【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.
【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,
∴,
解得:a<﹣1,
则a的取值范围在数轴上表示为:
.
故选:C.
6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是( )
A.甲组 B.乙组 C.丙组 D.丁组
【考点】模拟实验.
【分析】大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.
【解答】解:根据模拟实验的定义可知,实验相对科学的是次数最多的丁组.
故选:D.
7.如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.0 B.1 C.2 D.3
【考点】命题与定理.
【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.
【解答】解:如图所示:当①∠1=∠2,
则∠3=∠2,
故DB∥EC,
则∠D=∠4,
当②∠C=∠D,
故∠4=∠C,
则DF∥AC,
可得:∠A=∠F,
即⇒③;
当①∠1=∠2,
则∠3=∠2,
故DB∥EC,
则∠D=∠4,
当③∠A=∠F,
故DF∥AC,
则∠4=∠C,
故可得:∠C=∠D,
即⇒②;
当③∠A=∠F,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
故DF∥AC,
则∠4=∠C,
当②∠C=∠D,
则∠4=∠D,
故DB∥EC,
则∠2=∠3,
可得:∠1=∠2,
即⇒①,
故正确的有3个.
故选:D.
8.如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为( )
A.π B.π C. D.
【考点】弧长的计算;切线的性质.
【分析】由PA与PB为圆的两条切线,利用切线的性质得到两个角为直角,再利用四边形内角和定理求出∠AOB的度数,利用弧长公式求出的长即可.
【解答】解:∵PA、PB是⊙O的切线,
∴∠OBP=∠OAP=90°,
在四边形APBO中,∠P=60°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠AOB=120°,
∵OA=2,
∴的长l==π,
故选C
9.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为( )
A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0
【考点】由实际问题抽象出一元二次方程.
【分析】可设原正方形的边长为xm,则剩余的空地长为(x﹣1)m,宽为(x﹣2)m.根据长方形的面积公式方程可列出.
【解答】解:设原正方形的边长为xm,依题意有
(x﹣1)(x﹣2)=18,
故选C.
10.足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.点C B.点D或点E
C.线段DE(异于端点) 上一点 D.线段CD(异于端点) 上一点
【考点】角的大小比较.
【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.
【解答】解:连接BC,AC,BD,AD,AE,BE,
已知A,B,D,E四点共圆,同弧所对的圆周角相等,因而∠ADB=∠AEB,然后圆同弧对应的“圆内角“大于圆周角,“圆外角“小于圆周角,因而射门点在DE上时角最大,射门点在D点右上方或点E左下方时角度则会更小.
故选C.
11.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )
A.10cm B.15cm C.10cm D.20cm
【考点】圆锥的计算.
【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高.
【解答】解:过O作OE⊥AB于E,∵OA=OB=60cm,∠AOB=120°,
∴∠A=∠B=30°,
∴OE=OA=30cm,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴弧CD的长==20π,
设圆锥的底面圆的半径为r,则2πr=20π,解得r=10,
∴圆锥的高==20.
故选D.
12.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:
①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正确的个数有( )
A.1 B.2 C.3 D.4
【考点】二次函数图象与系数的关系.
【分析】直接利用抛物线与x轴交点个数以及抛物线与方程之间的关系、函数图象与各系数之间关系分析得出答案.
【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;
∵图象开口向上,∴a>0,
∵对称轴在y轴右侧,
∴a,b异号,
∴b<0,
∵图象与y轴交于x轴下方,
∴c<0,
∴abc>0,故②正确;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当x=﹣1时,a﹣b+c>0,故此选项错误;
∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,
故二次函数y=ax2+bx+c向上平移小于2个单位,则平移后解析式y=ax2+bx+c﹣m与x轴有两个交点,此时关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,
故﹣m<2,
解得:m>﹣2,
故④正确.
故选:B.
13.如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )
A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10
【考点】待定系数法求一次函数解析式;矩形的性质.
【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.
【解答】解:
设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵P点在第一象限,
∴PD=y,PC=x,
∵矩形PDOC的周长为10,
∴2(x+y)=10,
∴x+y=5,即y=﹣x+5,
故选C.
14.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是( )
A.0 B.2 C.3 D.4
【考点】分段函数.
【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,
【解答】解:当x+3≥﹣x+1,
即:x≥﹣1时,y=x+3,
∴当x=﹣1时,ymin=2,
当x+3<﹣x+1,
即:x<﹣1时,y=﹣x+1,
∵x<﹣1,
∴﹣x>1,
∴﹣x+1>2,
∴y>2,
∴ymin=2,
故选B
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15.已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为( )
A.(0,0) B.(1,) C.(,) D.(,)
【考点】菱形的性质;坐标与图形性质;轴对称﹣最短路线问题.
【分析】如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.首先说明点P就是所求的点,再求出点B坐标,求出直线OB、DA,列方程组即可解决问题.
【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.
∵四边形OABC是菱形,
∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,
∴PC+PD=PA+PD=DA,
∴此时PC+PD最短,
在RT△AOG中,AG===,
∴AC=2,
∵OA•BK=•AC•OB,
∴BK=4,AK==3,
∴点B坐标(8,4),
∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由解得,
∴点P坐标(,).
故选D.
16.如图,直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s(阴影部分),则s与t的大致图象为( )
A. B. C. D.
【考点】动点问题的函数图象.
【分析】根据直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形可知,当0≤t≤时,以及当<t≤2时,当2<t≤3时,求出函数关系式,即可得出答案.
【解答】解:∵直角边长为1的等腰直角三角形与边长为2的正方形在同一水平线上,三角形沿水平线从左向右匀速穿过正方形.设穿过时间为t,正方形与三角形不重合部分的面积为s,
由勾股定理得,
=
∴s关于t的函数大致图象应为:三角形进入正方形以前s增大,
当0≤t≤时,s=×1×1+2×2﹣=﹣t2;
当<t≤2时,s=×12=;
当2<t≤3时,s=﹣(3﹣t)2=t2﹣3t,
∴A符合要求,故选A.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二、填空题(本大题共有3个小题,共10分)
17.|﹣0.3|的相反数等于 ﹣0.3 .
【考点】绝对值;相反数.
【分析】根据绝对值定义得出|﹣0.3|=0.3,再根据相反数的定义:只有符号相反的两个数互为相反数作答.
【解答】解:∵|﹣0.3|=0.3,
0.3的相反数是﹣0.3,
∴|﹣0.3|的相反数等于﹣0.3.
故答案为:﹣0.3.
18.把多项式a2﹣4a分解因式为 a(a﹣4) .
【考点】因式分解﹣提公因式法.
【分析】原式提取a,即可得到结果.
【解答】解:原式=a(a﹣4).
故答案为:a(a﹣4).
19.有一列式子,按一定规律排列成﹣3a2,9a5,﹣27a10,81a17,﹣243a26,….
(1)当a=1时,其中三个相邻数的和是63,则位于这三个数中间的数是 ﹣27 ;
(2)上列式子中第n个式子为 (n为正整数).
【考点】单项式;规律型:数字的变化类.
【分析】(1)将a=1代入已知数列,可以发现该数列的通式为:(﹣3)n.然后根据限制性条件“三个相邻数的和是63”列出方程(﹣3)n﹣1+(﹣3)n+(﹣3)n+1=63.通过解方程即可求得(﹣3)n的值;
(2)利用归纳法来求已知数列的通式.
【解答】解:(1)当a=1时,则
﹣3=(﹣3)1,
9=(﹣3)2,
﹣27=(﹣3)3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
81=(﹣3)4,
﹣243=(﹣3)5,
….
则(﹣3)n﹣1+(﹣3)n+(﹣3)n+1=63,即﹣(﹣3)n+(﹣3)n﹣3(﹣3)n=63,
所以﹣(﹣3)n=63,
解得,(﹣3)n=﹣27,
故答案是:﹣27;
(2)∵第一个式子:﹣3a2=,
第二个式子:9a5=,
第三个式子:﹣27a10=,
第四个式子:81a17=,
….
则第n个式子为:(n为正整数).
故答案是:.
三、解答题(本大题共7个小题,共68分)
20.一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>9且x<26,单位:km)
第一次
第二次
第三次
第四次
x
x﹣5
2(9﹣x)
(1)说出这辆出租车每次行驶的方向.
(2)求经过连续4次行驶后,这辆出租车所在的位置.
(3)这辆出租车一共行驶了多少路程?
【考点】整式的加减;绝对值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【分析】(1)根据数的符号说明即可;
(2)把路程相加,求出结果,看结果的符号即可判断出答案;
(3)求出每个数的绝对值,相加求出即可.
【解答】(1)解:第一次是向东,第二次是向西,第三次是向东,第四次是向西.
(2)解:x+(﹣x)+(x﹣5)+2(9﹣x)=13﹣x,
∵x>9且x<26,
∴13﹣x>0,
∴经过连续4次行驶后,这辆出租车所在的位置是向东(13﹣x)km.
(3)解:|x|+|﹣x|+|x﹣5|+|2(9﹣x)|=x﹣23,
答:这辆出租车一共行驶了(x﹣23)km的路程.
21.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.
(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?
(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?
【考点】一元一次不等式的应用;二元一次方程组的应用.
【分析】(1)设购买A种型号健身器材x套,B型器材健身器材y套,根据:“A,B两种型号的健身器材共50套、共支出20000元”列方程组求解可得;
(2)设购买A型号健身器材m套,根据:A型器材总费用+B型器材总费用≤18000,列不等式求解可得.
【解答】解:(1)设购买A种型号健身器材x套,B型器材健身器材y套,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
根据题意,得:,
解得:,
答:购买A种型号健身器材20套,B型器材健身器材30套.
(2)设购买A型号健身器材m套,
根据题意,得:310m+460(50﹣m)≤18000,
解得:m≥33,
∵m为整数,
∴m的最小值为34,
答:A种型号健身器材至少要购买34套.
22.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)图1中a的值为 25 ;
(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;
(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.
【考点】众数;扇形统计图;条形统计图;加权平均数;中位数.
【分析】(Ⅰ)用整体1减去其它所占的百分比,即可求出a的值;
(Ⅱ)根据平均数、众数和中位数的定义分别进行解答即可;
(Ⅲ)根据中位数的意义可直接判断出能否进入复赛.
【解答】解:(Ⅰ)根据题意得:
1﹣20%﹣10%﹣15%﹣30%=25%;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则a的值是25;
故答案为:25;
(Ⅱ)观察条形统计图得:
==1.61;
∵在这组数据中,1.65出现了6次,出现的次数最多,
∴这组数据的众数是1.65;
将这组数据从小到大排列,其中处于中间的两个数都是1.60,
则这组数据的中位数是1.60.
(Ⅲ)能;
∵共有20个人,中位数是第10、11个数的平均数,
∴根据中位数可以判断出能否进入前9名;
∵1.65m>1.60m,
∴能进入复赛.
23.甲车从A地驶往B地,同时乙车从B地驶往A地,两车相向而行,匀速行驶,甲车距B地的距离y(km)与行驶时间x(h)之间的函数关系如图所示,乙车的速度是60km/h
(1)求甲车的速度;
(2)当甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,求a的值.
【考点】分式方程的应用;函数的图象.
【分析】(1)根据函数图象可知甲2小时行驶的路程是km,从而可以求得甲的速度;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)根据第(1)问中的甲的速度和甲乙两车相遇后,乙车速度变为a(km/h),并保持匀速行驶,甲车速度保持不变,结果乙车比甲车晚38分钟到达终点,可以列出分式方程,从而可以求得a的值.
【解答】解:(1)由图象可得,
甲车的速度为: =80km/h,
即甲车的速度是80km/h;
(2)相遇时间为: =2h,
由题意可得, =,
解得,a=75,
经检验,a=75是原分式方程的解,
即a的值是75.
24.如图,点C为△ABD的外接圆上的一动点(点C不在上,且不与点B,D重合),∠ACB=∠ABD=45°
(1)求证:BD是该外接圆的直径;
(2)连结CD,求证: AC=BC+CD;
(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究DM2,AM2,BM2三者之间满足的等量关系,并证明你的结论.
【考点】圆的综合题.
【分析】(1)要证明BD是该外接圆的直径,只需要证明∠BAD是直角即可,又因为∠ABD=45°,所以需要证明∠ADB=45°;
(2)在CD延长线上截取DE=BC,连接EA,只需要证明△EAF是等腰直角三角形即可得出结论;
(3)过点M作MF⊥MB于点M,过点A作AF⊥
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
MA于点A,MF与AF交于点F,证明△AMF是等腰三角形后,可得出AM=AF,MF=AM,然后再证明△ABF≌△ADM可得出BF=DM,最后根据勾股定理即可得出DM2,AM2,BM2三者之间的数量关系.
【解答】解:(1)∵=,
∴∠ACB=∠ADB=45°,
∵∠ABD=45°,
∴∠BAD=90°,
∴BD是△ABD外接圆的直径;
(2)在CD的延长线上截取DE=BC,
连接EA,
∵∠ABD=∠ADB,
∴AB=AD,
∵∠ADE+∠ADC=180°,
∠ABC+∠ADC=180°,
∴∠ABC=∠ADE,
在△ABC与△ADE中,
,
∴△ABC≌△ADE(SAS),
∴∠BAC=∠DAE,
∴∠BAC+∠CAD=∠DAE+∠CAD,
∴∠BAD=∠CAE=90°,
∵=
∴∠ACD=∠ABD=45°,
∴△CAE是等腰直角三角形,
∴AC=CE,
∴AC=CD+DE=CD+BC;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)过点M作MF⊥MB于点M,过点A作AF⊥MA于点A,MF与AF交于点F,连接BF,
由对称性可知:∠AMB=∠ACB=45°,
∴∠FMA=45°,
∴△AMF是等腰直角三角形,
∴AM=AF,MF=AM,
∵∠MAF+∠MAB=∠BAD+∠MAB,
∴∠FAB=∠MAD,
在△ABF与△ADM中,
,
∴△ABF≌△ADM(SAS),
∴BF=DM,
在Rt△BMF中,
∵BM2+MF2=BF2,
∴BM2+2AM2=DM2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y轴于点F,连接DF.
(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;
(2)求A、B两点的坐标;
(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.
【考点】二次函数综合题.
【分析】(1)先提取公式因式将原式变形为y=m(x2+4x﹣5),然后令y=0可求得函数图象与x轴的交点坐标,从而可求得点A、B的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为x=﹣2,故此可知当x=﹣2时,y=6,于是可求得m的值;
(2)由(1)的可知点A、B的坐标;
(3)先由一次函数的解析式得到∠PBF的度数,然后再由PD⊥PF,FO⊥OD,证明点O、D、P、F共圆,最后依据圆周角定理可证明∠PDF=60°.
【解答】解:(1)∵y=mx2+4mx﹣5m,
∴y=m(x2+4x﹣5)=m(x+5)(x﹣1).
令y=0得:m(x+5)(x﹣1)=0,
∵m≠0,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴x=﹣5或x=1.
∴A(﹣5,0)、B(1,0).
∴抛物线的对称轴为x=﹣2.
∵抛物线的顶点坐标为为6,
∴﹣9m=6.
∴m=﹣.
∴抛物线的解析式为y=﹣x2﹣x+.
(2)由(1)可知:A(﹣5,0)、B(1,0).
(3)如图所示:
∵OP的解析式为y=x,
∴∠AOP=30°.
∴∠POF=60°
∵PD⊥PF,FO⊥OD,
∴∠DPF=∠FOD=90°.
∴∠DPF+∠FOD=180°.
∴点O、D、P、F共圆.
∴∠PDF=∠POF.
∴∠PDF=60°.
26.综合与实践
问题情境
在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.
操作发现
(1)将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是 菱形 ;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;
实践探究
(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C′D′,连接BD′,CC′,使四边形BCC′D恰好为正方形,求a的值,请你解答此问题;
(4)请你参照以上操作,将图1中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图4中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.
【考点】几何变换综合题.
【分析】(1)利用旋转的性质结合菱形的性质得出:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,进而利用菱形的判定方法得出答案;
(2)利用旋转的性质结合菱形的性质得出,四边形BCC′D是平行四边形,进而得出四边形BCC′D是矩形;
(3)首先求出CC′的长,分别利用①点C″在边C′C上,②点C″在C′C的延长线上,求出a的值;
(4)利用平移的性质以及平行四边形的判定方法得出答案.
【解答】解:(1)如图2,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,
故AC′∥EC,AC∥C′E,
则四边形ACEC′是平行四边形,
故四边形ACEC′的形状是菱形;
故答案为:菱形;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)证明:如图3,作AE⊥CC′于点E,
由旋转得:AC′=AC,
则∠CAE=∠C′AE=α=∠BAC,
∵四边形ABCD是菱形,
∴BA=BC,
∴∠BCA=∠BAC,
∴∠CAE=∠BCA,
∴AE∥BC,同理可得:AE∥DC′,
∴BC∥DC′,则∠BCC′=90°,
又∵BC=DC′,
∴四边形BCC′D是平行四边形,
∵∠BCC′=90°,
∴四边形BCC′D是矩形;
(3)如图3,过点B作BF⊥AC,垂足为F,
∵BA=BC,
∴CF=AF=AC=×10=5,
在Rt△BCF中,BF===12,
在△ACE和△CBF中,
∵∠CAE=∠BCF,∠CEA=∠BFC=90°,
∴△ACE∽△CBF,
∴=,即=,
解得:EC=,
∵AC=AC′,AE⊥CC′,
∴CC′=2CE=2×=,
当四边形BCC′D′恰好为正方形时,分两种情况:
①点C″在边C′C上,a=C′C﹣13=﹣13=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
②点C″在C′C的延长线上,a=C′C+13=+13=,
综上所述:a的值为:或;
(4)答案不唯一,
例:如图4,画出正确图形,平移及构图方法:将△ACD沿着射线CA方向平移,平移距离为AC的长度,
得到△A′C′D′,连接A′B,D′C,
结论:∵BC=A′D′,BC∥A′D′,
∴四边形A′BCD′是平行四边形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年4月8日
由莲山课件提供http://www.5ykj.com/ 资源全部免费