由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年九年级数学中考模拟试卷
一 、选择题:
如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为( )
A.1 B.2k﹣1 C.2k+1 D.1﹣2k
下列运算正确的是( )
A.3a2﹣a2=3 B.(a2)3=a5 C.a3•a6=a9 D.(2a2)2=4a2
计算:,,,,,归纳各计算结果中的个位数字规律,猜测的个位数字是( )
A.1 B.3 C.7 D.5
在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势” 分别穿过这两个空洞,则该几何体为( )
A. B. C. D.
若, 则w=( )
下列各组中,不是同类项的是( )
A.52与25 B.-ab与ba C.0.2a2b与-a2b D.a2b3与-a3b2
为丰富学生课外活动,某校积极开展社团活动,学生可根据自己的爱好选择一项,已知该校开设的体育社团有:A:篮球,B:排球C:足球;D:羽毛球,E:乒乓球.李老师对某年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是( )
A.选科目E的有5人
B.选科目D的扇形圆心角是72°
C.选科目A的人数占体育社团人数的一半
D.选科目B的扇形圆心角比选科目D的扇形圆心角的度数少21.6°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
如图,在△ABC中,DE∥BC,AD=6,BD=3, AE=4,则EC的长为( )
A.1 B.2 C.3 D. 4
在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是( )
A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣2
在半径为10的⊙O内有一点P,OP=6,在过点P的弦中,长度为整数弦的条数为( )
A.5条 B.6条 C.7条 D.8条
一 、填空题:
不等式组的解集是 .
分解因式:a2b﹣6ab2+9b3= .
如图,在Rt△ABC中,∠C=90°,∠B=70°,△ABC的内切圆⊙O与边AB、BC、CA分别相切于点D、E、F,则∠DEF的度数为 °.
如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
一 、计算题:
计算:(﹣1)2016+2sin60°﹣|﹣|+π0.
解方程:x2-2x=2x+1
二 、解答题:
如图在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(﹣1,4),C(﹣3,1)
(1)在图中作△A′B′C′使△A′B′C′和△ABC关于x轴对称;
(2)写出点A′B′C′的坐标;
(3)求△ABC的面积.
已知二次函数.
(1)将化成y =a (x - h) 2 + k的形式;
(2)指出该二次函数图象的对称轴和顶点坐标;
(3)当x取何值时,y随x的增大而增大?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
如图,在一次数学室外活动课上,小明和小红合作一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红的眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°,两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).请求出旗杆MN的高度.
(参考数据:≈1.4,,1.7,结果保留整数.)
如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.
(1)求函数y=kx+b和y=的表达式;
(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.
(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;
(2)求这三条线段能组成直角三角形的概率.
一 、综合题:
已知二次函数y=x2+2bx+c(b、c为常数).
(Ⅰ)当b=1,c=﹣3时,求二次函数在﹣2≤x≤2上的最小值;
(Ⅱ)当c=3时,求二次函数在0≤x≤4上的最小值;
(Ⅲ)当c=4b2时,若在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)如图1,正方形ABCD和正方形DEFG,G在AD边上,E在CD的延长线上.
求证:AE=CG,AE⊥CG;
(2)如图2,若将图1中的正方形DEFG绕点D顺时针旋转角度θ(0°<θ<90°),此时AE=CG还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3)如图3,当正方形DEFG绕点D顺时针旋转45°时,延长CG交AE于点H,当AD=4,DG=时,求线段CH的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
参考答案
1.B
2.C
3.B
4.C
5.D
6.D
7.C
8.B
9.C.
10.D
11.答案为:﹣1<x≤1.
12.答案为:b(a﹣3b)2
13.答案为:为80°;
14.答案为:6.
15.【解答】解:(﹣1)2016+2sin60°﹣|﹣|+π0=1+2×﹣+1=1+﹣+1=2
16.x2-4x=1,x2-4x+4=1+4.(x-2)2=5.x-2=±.∴x1=2+,x2=2-.
17.【解答】解:(1)如图,
(2)点A′的坐标为(4,0),点B′的坐标为(﹣1,﹣4),点C′的坐标为(﹣3,﹣1).
18.
19.解:过点A作AE⊥MN于E,过点C作CF⊥MN于F,则EF=AB﹣CD=1.7﹣1.5=0.2(m),
在Rt△AEM中,∵∠AEM=90°,∠MAE=45°,∴AE=ME.
设AE=ME=xm,则MF=(x+0.2)m,FC=(28﹣x)m.
在Rt△MFC中,∵∠MFC=90°,∠MCF=30°,∴MF=CF•tan∠MCF,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴x+0.2=(28﹣x),解得x≈9.7,∴MN=ME+EN=9.7+1.7≈11米.
答:旗杆MN的高度约为11米.
20.解:(1)把点A(4,3)代入函数y=得:a=3×4=12,∴y=.OA==5,
∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),
把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.
(2)∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),
∵MB=MC,∴
解得:x=2.5,∴点M的坐标为(2.5,0).
21.
22.【解答】解:(Ⅰ)当b=1,c=﹣3时,二次函数解析式为y=x2+2x﹣3=(x+1)2﹣4,
∴x=﹣1在﹣2≤x≤2的范围内,此时函数取得最小值为﹣4,
(Ⅱ)y=x2+2bx+3,的对称轴为x=﹣b,
①若﹣b<0,即b>0时,当x=0时,y有最小值为3,
②若0≤b≤4,即:﹣4≤b≤0时,当x=﹣b时,y有最小值﹣b2+3;
③若﹣b>4,即b<﹣4时,当x=﹣4时,y有最小值为8b+19,
(Ⅲ)当c=4b2时,二次函数的解析式为y=x2+2bx+4b2,它的开口向上,对称轴为x=﹣b的抛物线,
①若﹣b<2b,即b>0时,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而增大,
∴当x=2b时,y=(2b)2+2b×2b+(2b)2=12b2为最小值,
∴12b2=21,∴b=或b=﹣(舍)∴二次函数的解析式为y=x2+x+7,
②若2b≤﹣b≤2b+3,即﹣1≤b≤0,
当x=﹣b时,代入y=x2+2bx+4b2,得y最小值为3b2,
∴3b2=21∴b=﹣(舍)或b=(舍),
③若﹣b>2b+3,即b<﹣1,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而减小,
∴当x=2b+3时,代入二次函数的解析式为y=x2+2bx+4b2中,得y最小值为12b2+18b+9,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴12b2+18b+9=21,∴b=﹣2或b=(舍),∴二次函数的解析式为y=x2﹣4x+16.
综上所述,b=或b=﹣2,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16
23.【解答】解:(1)在△ADE和△CDG中,,
∴△ADE≌△CDG,∴AE=CG,∠AED=∠CGD,
∵∠DCG+∠CGD=90°,∴∠DCG+∠AED=90°,∴AE⊥CG.
(2)∵∠CDG+∠ADG=90°,∠ADE+∠ADG=90°,∴∠CDG=∠ADE
在△ADE和△CDG中,,∴△ADE≌△CDG,∴AE=CG,∠AED=∠CGD,
∵∠DCG+∠CGD=90°,∴∠DCG+∠AED=90°,∴AE⊥CG.
(3)如图,
过点E作AD的垂线,垂足为N,连接AC,在△ADE和△CDG中,,∴△ADE≌△CDG,
∴∠EAD=∠DCM∴tan∠DCM=,∴DM=CD=∴CM==,AM=AD﹣DM=
∵△CMD∽△AMH,∴,∴AH=,∴CH==.
由莲山课件提供http://www.5ykj.com/ 资源全部免费