2017年中考数学一模试题(广州市花都区附答案和解析)
加入VIP免费下载

本文件来自资料包: 《2017年中考数学一模试题(广州市花都区附答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2017年广东省广州市花都区中考数学一模试卷 ‎ ‎ 一、选择题(本大题共10小题,每小题3分,共30分)‎ ‎1.﹣3的倒数是(  )‎ A.3 B. C.﹣ D.﹣3‎ ‎2.将如图所示的等腰直角三角形经过平移得到图案是(  )‎ A. B. C. D.‎ ‎3.下列计算中正确的是(  )‎ A.a2+a3=a5 B.a3﹣a2=a C.a2•a3=a6 D.a3÷a2=a ‎4.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:‎ 时间(小时)‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ 人数 ‎10‎ ‎15‎ ‎20‎ ‎5‎ 则这50名学生这一周在校的平均体育锻炼时间是(  )‎ A.6.2小时 B.6.4小时 C.6.5小时 D.7小时 ‎5.二次函数y=3(x﹣h)2+k的图象如图所示,下列判断正确的是(  )‎ A.h>0,k>0 B.h>0,k<0 C.h<0,k>0 D.h<0,k<0‎ ‎6.如图,直线a∥b.下列关系判断正确的是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.∠1+∠2=180° B.∠1+∠2=90° C.∠1=∠2 D.无法判断 ‎7.不等式组的解集为(  )‎ A.x>1 B.﹣2≤x<1 C.x≥﹣2 D.无解 ‎8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是(  )‎ A.12 B.14 C.16 D.18‎ ‎9.若函数y=kx﹣3的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是(  )‎ A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.无法确定 ‎10.四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为(  )‎ A.80° B.90° C.100° D.130°‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎11.如果有意义,那么x的取值范围是  .‎ ‎12.因式分解:a2﹣3ab=  .‎ ‎13.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O  .‎ ‎14.如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为  .‎ ‎15.如图,一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么这个几何体的侧面积是  .www-2-1-cnjy-com ‎16.利用计算机设计了一个计算程序,输入和输出的数据如下表:‎ ‎ 输入 ‎…‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎…‎ ‎ 输出 ‎…‎ ‎﹣‎ ‎…‎ 当输入的数据是8时,输出的数据是  ,当输入数据是n时,输出的数据是  .‎ ‎ ‎ 三、解答题(本大题共9小题,共102分)‎ ‎17.解分式方程: =.‎ ‎18.已知:E、F是▱ABCD的对角线AC上的两点,AF=CE,求证:∠CDF=∠ABE.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎19.先化简,再求值:(m﹣1)2﹣m(n﹣2)﹣(m﹣1)(m+1),其中m和n是面积为5的直角三角形的两直角边长.21cnjy.com ‎20.2017年3月全国两会胜利召开,某学校就两会期间出现频率最高的热词:A.蓝天保卫战,B.不动产保护,C.经济增速,D.简政放权等进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:‎ ‎(1)本次调查中,一共调查了  名同学;‎ ‎(2)条形统计图中,m=  ,n=  ;‎ ‎(3)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?‎ ‎21.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,AD是∠BAC的平分线.‎ ‎(1)尺规作图:过点D作DE⊥AC于E;‎ ‎(2)求DE的长.‎ ‎22.某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.‎ ‎(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.‎ ‎23.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.‎ ‎(1)当F为AB的中点时,求该函数的解析式;‎ ‎(2)当k为何值时,△EFA的面积为.‎ ‎24.已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.‎ ‎(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;‎ ‎(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.‎ ‎(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.21·世纪*教育网 ‎25.在坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(﹣3,0)和B(1,0),与y轴交于点C,‎ ‎(1)求抛物线的表达式;‎ ‎(2)若点D为此抛物线上位于直线AC上方的一个动点,当△DAC的面积最大时,求点D的坐标;‎ ‎(3)设抛物线顶点关于y轴 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 的对称点为M,记抛物线在第二象限之间的部分为图象G.点N是抛物线对称轴上一动点,如果直线MN与图象G有公共点,请结合函数的图象,直接写出点N纵坐标t的取值范围.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2017年广东省广州市花都区中考数学一模试卷 参考答案与试题解析 ‎ ‎ 一、选择题(本大题共10小题,每小题3分,共30分)‎ ‎1.﹣3的倒数是(  )‎ A.3 B. C.﹣ D.﹣3‎ ‎【考点】17:倒数.‎ ‎【分析】利用倒数的定义,直接得出结果.‎ ‎【解答】解:∵﹣3×(﹣)=1,‎ ‎∴﹣3的倒数是﹣.‎ 故选:C.‎ ‎ ‎ ‎2.将如图所示的等腰直角三角形经过平移得到图案是(  )‎ A. B. C. D.‎ ‎【考点】Q5:利用平移设计图案;KW:等腰直角三角形.‎ ‎【分析】根据平移的性质即可得出结论.‎ ‎【解答】解:由平移的性质可知,只有B选项可以通过平移得到.‎ 故选B.‎ ‎ ‎ ‎3.下列计算中正确的是(  )‎ A.a2+a3=a5 B.a3﹣a2=a C.a2•a3=a6 D.a3÷a2=a ‎【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法.‎ ‎【分析】根据整式的运算法则即可判断.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:(A)a2与a3不是同类项,不能合并,故A错误;‎ ‎(B)a3与a2不是同类项,不能合并,故B错误;‎ ‎(C)原式=a5,故C错误;‎ 故选(D)‎ ‎ ‎ ‎4.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:‎ 时间(小时)‎ ‎5‎ ‎6‎ ‎7‎ ‎8‎ 人数 ‎10‎ ‎15‎ ‎20‎ ‎5‎ 则这50名学生这一周在校的平均体育锻炼时间是(  )‎ A.6.2小时 B.6.4小时 C.6.5小时 D.7小时 ‎【考点】W2:加权平均数.‎ ‎【分析】根据加权平均数的计算公式列出算式(5×10+6×15+7×20+8×5)÷50,再进行计算即可.‎ ‎【解答】解:根据题意得:‎ ‎(5×10+6×15+7×20+8×5)÷50‎ ‎=(50+90+140+40)÷50‎ ‎=320÷50‎ ‎=6.4(小时).‎ 故这50名学生这一周在校的平均体育锻炼时间是6.4小时.‎ 故选:B.‎ ‎ ‎ ‎5.二次函数y=3(x﹣h)2+k的图象如图所示,下列判断正确的是(  )‎ A.h>0,k>0 B.h>0,k<0 C.h<0,k>0 D.h<0,k<0‎ ‎【考点】H4:二次函数图象与系数的关系.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】观察函数图象,找出顶点所在的象限,由此即可得出结论.‎ ‎【解答】解:观察函数图象可知:顶点(h,k)在第四象限,‎ ‎∴h>0,k<0.‎ 故选B.‎ ‎ ‎ ‎6.如图,直线a∥b.下列关系判断正确的是(  )‎ A.∠1+∠2=180° B.∠1+∠2=90° C.∠1=∠2 D.无法判断 ‎【考点】JA:平行线的性质.‎ ‎【分析】根据平行线的性质,得出∠1=∠3,再根据∠2+∠3=180°,即可得到∠1+∠2=180°.2·1·c·n·j·y ‎【解答】解:∵直线a∥b,‎ ‎∴∠1=∠3,‎ 又∵∠2+∠3=180°,‎ ‎∴∠1+∠2=180°,‎ 故选:A.‎ ‎ ‎ ‎7.不等式组的解集为(  )‎ A.x>1 B.﹣2≤x<1 C.x≥﹣2 D.无解 ‎【考点】CB:解一元一次不等式组.‎ ‎【分析】先求出不等式的解集,再求出不等式组的解集即可.‎ ‎【解答】解:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵解不等式①得:x>1,‎ 解不等式②得:x≥﹣2,‎ ‎∴不等式组的解集为x>1,‎ 故选A.‎ ‎ ‎ ‎8.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是(  )‎ A.12 B.14 C.16 D.18‎ ‎【考点】KQ:勾股定理.‎ ‎【分析】根据勾股定理求出AC,根据三角形的外角的性质得到∠B=∠CAB,根据等腰三角形的性质求出BC,计算即可.【版权所有:21教育】‎ ‎【解答】解:∵∠D=90°,CD=6,AD=8,‎ ‎∴AC==10,‎ ‎∵∠ACD=2∠B,∠ACD=∠B+∠CAB,‎ ‎∴∠B=∠CAB,‎ ‎∴BC=AC=10,‎ ‎∴BD=BC+CD=16,‎ 故选:C.‎ ‎ ‎ ‎9.若函数y=kx﹣3的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是(  )‎ A.有两个不相等的实数根 B.有两个相等的实数根 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 C.没有实数根 D.无法确定 ‎【考点】AA:根的判别式;F7:一次函数图象与系数的关系.‎ ‎【分析】先根据函数y=kx﹣3的图象可得k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.‎ ‎【解答】解:根据函数y=kx﹣3的图象可得k<0,‎ 则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,‎ 则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,‎ 故选:A.‎ ‎ ‎ ‎10.四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为(  )‎ A.80° B.90° C.100° D.130°‎ ‎【考点】PA:轴对称﹣最短路线问题.‎ ‎【分析】延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N,此时△AMN周长最小,推出∠AMN+∠NM=2(∠A′+∠A″)即可解决.21世纪教育网版权所有 ‎【解答】解:延长AB到A′使得BA′=AB,延长AD到A″使得DA″=AD,连接A′A″与BC、CD分别交于点M、N.‎ ‎∵∠ABC=∠ADC=90°,‎ ‎∴A、A′关于BC对称,A、A″关于CD对称,‎ 此时△AMN的周长最小,‎ ‎∵BA=BA′,MB⊥AB,‎ ‎∴MA=MA′,同理:NA=NA″,‎ ‎∴∠A′=′MAB,∠A″=∠NAD,‎ ‎∵∠AMN=∠A′+′MAB=2∠A′,∠ANM=∠A″+∠NAD=2∠A″,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠AMN+∠ANM=2(∠A′+∠A″),‎ ‎∵∠BAD=130°,‎ ‎∴∠A′+∠A″=180°﹣∠BAD=50°M ‎∴∠AMN+∠NM=2×50°=100°.‎ 故选C.‎ ‎ ‎ 二、填空题(本大题共6小题,每小题3分,共18分)‎ ‎11.如果有意义,那么x的取值范围是 x≥2 .‎ ‎【考点】72:二次根式有意义的条件.‎ ‎【分析】根据被开方数大于等于0列不等式求解即可.‎ ‎【解答】解:由题意得,x﹣2≥0,‎ 解得x≥2.‎ 故答案为:x≥2.‎ ‎ ‎ ‎12.因式分解:a2﹣3ab= a(a﹣3b) .‎ ‎【考点】53:因式分解﹣提公因式法.‎ ‎【分析】先确定公因式为a,然后提取公因式整理即可.‎ ‎【解答】解:a2﹣3ab=a(a﹣3b).‎ ‎ ‎ ‎13.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O 外 .‎ ‎【考点】M8:点与圆的位置关系.‎ ‎【分析】由条件可求得圆的半径为1,由条件可知点P到圆心的距离大于半径,可判定点P在圆外.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:‎ ‎∵⊙O的直径为2,‎ ‎∴⊙O的半径为1,‎ ‎∵OP=2>1,‎ ‎∴点P在⊙O外,‎ 故答案为:外.‎ ‎ ‎ ‎14.如图,在边长为1的小正反形组成的网格中,△ABC的三个顶点均在格点上,则tanB的值为  .21·cn·jy·com ‎【考点】T1:锐角三角函数的定义.‎ ‎【分析】根据在直角三角形中,正切为对边比邻边,可得答案.‎ ‎【解答】解:如图:‎ ‎,‎ tanB==.‎ 故答案是:.‎ ‎ ‎ ‎15.如图,一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么这个几何体的侧面积是 2π .2-1-c-n-j-y 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【考点】MP:圆锥的计算;U3:由三视图判断几何体.‎ ‎【分析】根据三视图的知识可知该几何体为一个圆锥.又已知底面半径可求出母线长以及侧面积.‎ ‎【解答】解:综合主视图,俯视图,左视图可以看出这个几何体应该是圆锥,且底面圆的半径为 1,母线长为2,21*cnjy*com 因此侧面面积为:π×1×2=2π.‎ 故答案为:2π.‎ ‎ ‎ ‎16.利用计算机设计了一个计算程序,输入和输出的数据如下表:‎ ‎ 输入 ‎…‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ ‎…‎ ‎ 输出 ‎…‎ ‎﹣‎ ‎…‎ 当输入的数据是8时,输出的数据是 ﹣ ,当输入数据是n时,输出的数据是 (﹣1)n+1 .‎ ‎【考点】1G:有理数的混合运算.‎ ‎【分析】根据表格得出输入的数据是8时,输出的数据,归纳总结得到一般性规律,确定出所求即可.‎ ‎【解答】解:当输入的数据是8时,输出的数据是﹣,‎ 当输入数据是n时,输出的数据是(﹣1)n+1.‎ 故答案为:﹣;(﹣1)n+1‎ ‎ ‎ 三、解答题(本大题共9小题,共102分)‎ ‎17.解分式方程: =.‎ ‎【考点】B3:解分式方程.‎ ‎【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.‎ ‎【解答】解:去分母得:x﹣6=4x,‎ 解得:x=﹣2,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 经检验x=﹣2是分式方程的解.‎ ‎ ‎ ‎18.已知:E、F是▱ABCD的对角线AC上的两点,AF=CE,求证:∠CDF=∠ABE.‎ ‎【考点】L5:平行四边形的性质.‎ ‎【分析】根据平行四边形的对边相等可得AB=CD,对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠BAE=∠DCF,然后利用“边角边”证明△ABE和△CDF全等,根据全等三角形对应边相等可得结论.21教育网 ‎【解答】证明:∵AF=CE.‎ ‎∴AE=CF,‎ ‎∵在▱ABCD中,AB=CD,AB∥CD,‎ ‎∴∠BAE=∠DCF,‎ 在△ABE和△CDF中,,‎ ‎∴△ABE≌△CDF(SAS),‎ ‎∴∠CDF=∠ABE.‎ ‎ ‎ ‎19.先化简,再求值:(m﹣1)2﹣m(n﹣2)﹣(m﹣1)(m+1),其中m和n是面积为5的直角三角形的两直角边长.www.21-cn-jy.com ‎【考点】4J:整式的混合运算—化简求值.‎ ‎【分析】先将原式化简,然后根据题意列出m与n的关系即可代入求值.‎ ‎【解答】解:由题意可知:mn=10,‎ 原式=m2﹣2m+1﹣mn+2m﹣(m2﹣1)‎ ‎=m2﹣2m+1﹣mn+2m﹣m2+1‎ ‎=2﹣mn 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎=﹣8‎ ‎ ‎ ‎20.2017年3月全国两会胜利召开,某学校就两会期间出现频率最高的热词:A.蓝天保卫战,B.不动产保护,C.经济增速,D.简政放权等进行了抽样调查,每个同学只能从中选择一个“我最关注”的热词,如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:‎ ‎(1)本次调查中,一共调查了 300 名同学;‎ ‎(2)条形统计图中,m= 60 ,n= 90 ;‎ ‎(3)从该校学生中随机抽取一个最关注热词D的学生的概率是多少?‎ ‎【考点】X4:概率公式;VB:扇形统计图;VC:条形统计图.‎ ‎【分析】(1)根据A的人数为105人,所占的百分比为35%,求出总人数,即可解答;‎ ‎(2)C所对应的人数为:总人数×30%,B所对应的人数为:总人数﹣A所对应的人数﹣C所对应的人数﹣D所对应的人数,即可解答;‎ ‎(3)根据概率公式,即可解答.‎ ‎【解答】解:(1)105÷35%=300(人),‎ 故答案为:300;‎ ‎(2)n=300×30%=90(人),‎ m=300﹣105﹣90﹣45=60(人).‎ 故答案为:60,90;‎ ‎(3)从该校学生中随机抽取一个最关注热词D的学生的概率是=,‎ 答:从该校学生中随机抽取一个最关注热词D的学生的概率是.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎21.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,AD是∠BAC的平分线.‎ ‎(1)尺规作图:过点D作DE⊥AC于E;‎ ‎(2)求DE的长.‎ ‎【考点】N2:作图—基本作图;KF:角平分线的性质.‎ ‎【分析】(1)根据过直线外一点作直线垂线的作法即可画出图形;‎ ‎(2)设DE=x,则AC==5,跟进吧AD是∠BAC的平分线,∠ABC=90°,DE⊥AC可得出BD=DE=x,CD=BC﹣BD=4﹣x,再由S△ACD==求出x的值即可.【来源:21·世纪·教育·网】‎ ‎【解答】解:(1)方法1,如图1所示,过点D作AC的垂线即可;‎ 方法2:运用角平分线的性质,以点D为圆心,BD的长为半径画圆,⊙D和AC相切于点E,连接DE即可.‎ ‎(2)方法一:设DE=x,则AC==5.‎ ‎∵AD是∠BAC的平分线,∠ABC=90°,DE⊥AC,‎ ‎∴BD=DE=x,CD=BC﹣BD=4﹣x.‎ ‎∵S△ACD==,‎ ‎∴=,解得x=,‎ ‎∴DE=x=.‎ 方法二:设DE=x,则AC==5.‎ ‎∵AD是∠BAC的平分线,∠ABC=90°,DE⊥AC,‎ ‎∴BD=DE=x,CD=BC﹣BD=4﹣x.‎ ‎∵∠DEC=∠ABC=90°,∠C=∠C,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴△DEC∽△ABC,‎ ‎∴=,‎ ‎∴=,解得x=,‎ ‎∴DE=x=.‎ 方法三:设DE=x,则AC==5.‎ ‎∵AD是∠BAC的平分线,∠ABC=90°,DE⊥AC,‎ ‎∴BD=DE=x,CD=BC﹣BD=4﹣x.‎ ‎∵在Rt△ABC中,sin∠C==,‎ 在Rt△DEC中,sin∠C==,‎ ‎∴=,解得x=,‎ ‎∴DE=x=.‎ ‎ ‎ ‎22.某班为参加学校的大课间活动比赛,准备购进一批跳绳,已知2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元.‎ ‎(1)求一根A型跳绳和一根B型跳绳的售价各是多少元?‎ ‎(2)学校准备购进这两种型号的跳绳共50根,并且A型跳绳的数量不多于B型跳绳数量的3倍,请设计书最省钱的购买方案,并说明理由.‎ ‎【考点】FH:一次函数的应用;9A:二元一次方程组的应用.‎ ‎【分析】(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,根据:“2根A型跳绳和1根B型跳绳共需56元,1根A型跳绳和2根B型跳绳共需82元”列方程组求解即可;【出处:21教育名师】‎ ‎(2)首先根据“A型跳绳的数量不多于B 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 型跳绳数量的3倍”确定自变量的取值范围,然后得到有关总费用和A型跳绳之间的关系得到函数解析式,确定函数的最值即可.21*cnjy*com ‎【解答】解:(1)设一根A型跳绳售价是x元,一根B型跳绳的售价是y元,‎ 根据题意,得:‎ ‎,‎ 解得:,‎ 答:一根A型跳绳售价是10元,一根B型跳绳的售价是36元;‎ ‎(2)设购进A型跳绳m根,总费用为W元,‎ 根据题意,得:W=10m+36(50﹣m)=﹣26m+1800,‎ ‎∵﹣26<0,‎ ‎∴W随m的增大而减小,‎ 又∵m≤3(50﹣m),解得:m≤37.5,‎ 而m为正整数,‎ ‎∴当m=37时,W最小=﹣2×37+350=276,‎ 此时50﹣37=13,‎ 答:当购买A型跳绳37只,B型跳绳13只时,最省钱.‎ ‎ ‎ ‎23.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.‎ ‎(1)当F为AB的中点时,求该函数的解析式;‎ ‎(2)当k为何值时,△EFA的面积为.‎ ‎【考点】GB:反比例函数综合题;G5:反比例函数系数k的几何意义;G7:待定系数法求反比例函数解析式.【来源:21cnj*y.co*m】‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;‎ ‎(2)根据图中的点的坐标表示出三角形的面积,得到关于k的方程,通过解方程求得k的值即可.‎ ‎【解答】解:(1)∵在矩形OABC中,OA=3,OC=2,‎ ‎∴B(3,2),‎ ‎∵F为AB的中点,‎ ‎∴F(3,1),‎ ‎∵点F在反比例函数y=(k>0)的图象上,‎ ‎∴k=3,‎ ‎∴该函数的解析式为y=;‎ ‎(2)由题意知E,F两点坐标分别为E(,2),F(3,),‎ ‎∴S△EFA=AF•BE=×k(3﹣k),‎ ‎=k﹣k2‎ ‎∵△EFA的面积为.‎ ‎∴k﹣k2=.‎ 整理,得 k2﹣6k+8=0,‎ 解得k1=2,k2=4,‎ ‎∴当k的值为2或4时,△EFA的面积为.‎ ‎ ‎ ‎24.已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.‎ ‎(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;‎ ‎(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.21教育名师原创作品 ‎【考点】MR:圆的综合题.‎ ‎【分析】(1)如图①,连接PC.根据“内接四边形的对角互补的性质”即可证得结论;‎ ‎(2)如图②,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;‎ ‎(3)如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.利用全等三角形△ABP≌△AQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到△APC中来求即可.‎ ‎【解答】(1)证明:如图①,连接PC.‎ ‎∵△ACQ是由△ABP绕点A逆时针旋转得到的,‎ ‎∴∠ABP=∠ACQ.‎ 由图①知,点A、B、P、C四点共圆,‎ ‎∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),‎ ‎∴∠ACP+∠ACQ=180°(等量代换);‎ ‎(2)解:PA=PB+PC.理由如下:‎ 如图②,连接BC,延长BP至E,使PE=PC,连接CE.‎ ‎∵弦AB=弦AC,∠BAC=60°,‎ ‎∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).‎ ‎∵A、B、P、C四点共圆,‎ ‎∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵∠BPC+∠EPC=180°,‎ ‎∴∠BAC=∠CPE=60°,‎ ‎∵PE=PC,‎ ‎∴△PCE是等边三角形,‎ ‎∴CE=PC,∠E=∠ECP=∠EPC=60°;‎ 又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,‎ ‎∴∠BCE=∠ACP(等量代换).‎ 在△BEC和△APC中,,‎ ‎∴△BEC≌△APC(SAS),‎ ‎∴BE=PA,‎ ‎∴PA=BE=PB+PC;‎ ‎(3)若∠BAC=120°时,(2)中的结论不成立. PA=PB+PC.理由如下:‎ 如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.‎ ‎∵∠BAC=120°,∠BAC+∠BPC=180°,‎ ‎∴∠BPC=60°.‎ ‎∵弦AB=弦AC,‎ ‎∴∠APB=∠APQ=30°.‎ 在△ABP和△AQP中,‎ ‎∵,‎ ‎∴△ABP≌△AQP(SAS),‎ ‎∴AB=AQ,PB=PQ(全等三角形的对应边相等),‎ ‎∴AQ=AC(等量代换).‎ 在等腰△AQC中,QG=CG.‎ 在Rt△APG中,∠APG=30°,则AP=2AG,PG=AG.‎ ‎∴PB+PC=PG﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=2AG,‎ ‎∴PA=2AG,即PA=PB+PC.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎25.在坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(﹣3,0)和B(1,0),与y轴交于点C,‎ ‎(1)求抛物线的表达式;‎ ‎(2)若点D为此抛物线上位于直线AC上方的一个动点,当△DAC的面积最大时,求点D的坐标;‎ ‎(3)设抛物线顶点关于y轴的对称点为M,记抛物线在第二象限之间的部分为图象G.点N是抛物线对称轴上一动点,如果直线MN与图象G有公共点,请结合函数的图象,直接写出点N纵坐标t的取值范围.‎ ‎【考点】HF:二次函数综合题.‎ ‎【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣1),然后将a=﹣1代入即可求得抛物线的解析式;‎ ‎(2)过点D作DE∥y轴,交AC于点E.先求得点C的坐标,然后利用待定系数法求得直线AC的解析式,设点D的坐标为(x,﹣x2﹣2x+3),则E点的坐标为(x,x+3),于是得到DE的长(用含x的式子表示,接下来,可得到△ADC的面积与x的函数关系式,最后依据配方法可求得三角形的面积最大时,点D的坐标;‎ ‎(3)如图2所示:先求得抛物线的顶点坐标,于是可得到点M的坐标,可判断出点M在直线AC上,从而可求得点N的坐标,当点N′与抛物线的顶点重合时,N′的坐标为(﹣1,4),于是可确定出t的取值范围.‎ ‎【解答】解:(1)设抛物线的解析式为y=a(x+3)(x﹣1).‎ 由题意可知:a=﹣1.‎ ‎∴抛物线的解析式为y=﹣1(x+3)(x﹣1)即y=﹣x2﹣2x+3.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)如图所示:过点D作DE∥y轴,交AC于点E.‎ ‎∵当x=0时,y=3,‎ ‎∴C(0,3).‎ 设直线AC的解析式为y=kx+3.‎ ‎∵将A(﹣3,0)代入得:﹣3k+3=0,解得:k=1,‎ ‎∴直线AC的解析式为y=x+3.‎ 设点D的坐标为(x,﹣x2﹣2x+3),则E点的坐标为(x,x+3).‎ ‎∴DE=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.‎ ‎∴△ADC的面积=DE•OA=×3×(﹣x2﹣3x)=﹣(x+)2+.‎ ‎∴当x=﹣时,△ADC的面积有最大值.‎ ‎∴D(﹣,).‎ ‎(3)如图2所示:‎ ‎∵y=﹣x2﹣2x+3=﹣(x+1)2+4,‎ ‎∴抛物线的顶点坐标为(﹣1,4).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∵点M与抛物线的顶点关于y轴对称,‎ ‎∴M(1,4).‎ ‎∵将x=1代入直线AC的解析式得y=4,‎ ‎∴点M在直线AC上.‎ ‎∵将x=﹣1代入直线AC的解析式得:y=2,‎ ‎∴N(﹣1,2).‎ 又∵当点N′与抛物线的顶点重合时,N′的坐标为(﹣1,4).‎ ‎∴当2<t≤4时,直线MN与函数图象G有公共点.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料