由莲山课件提供http://www.5ykj.com/ 资源全部免费
辽宁省丹东2017届九年级数学第二次模拟试题
时间120分钟 满分:150分
一. 选择题(每题3分,共24分)
1.全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任。其中数字0.00003用科学计数法表示为( )
A.3×10-5 B 3×10-4 C. 0.3×10-5 D. 0.3×10-4
2.一元二次方程x2-3x=0的解是( )
A.0 B.3 C.0,3 D.0,-2
3.一个正多边形的内角和为540 °,则这个正多边形的每一个外角等于( )
A. 108° B. 90° C. 72° D.60°
4.若不等式组 有解,则实数a的取值范围是( )
A. a≥-2 B. a<-2 C.a≤-2 D.a>-2
5.已知函数y=的图像经过点(1,-1),则函数y=kx-2的图像是( )
A.B.C.D.
6. 下列调查方式中适合的是( )
A.要了解一批节能灯的使用寿命,采用普查方式
B.调查你所在班级同学的身高,采用抽样调查方式
C.环保部门调查长江某段水域的水质情况,采用抽样调查方式
D.调查全市中学生每天的就寝时间,采用普查方式
7. 如图,点E,点F分别在菱形ABCD的边AB,AD上,且AE=DF,BF交DE于点G,延长BF交CD的延长线于H,若 =2,则 的值为( )
A. B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
8.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2016B2017C2017的顶点B2017的坐标是 .
A (21008,0) B (21008 ,21008) C (0, 21008) D (21007, 21007)
二.填空题(每题3分,共24分)
9.分解因式:2ax2-8a=____________
10.在式子中自变量x 的取值范围是__________
11.若关于x的分式方程+3=有增根,则m的值为___________
12. 若小张投掷两次一枚质地均匀的硬币,则两次出现正面朝上的概率是__________
13. 一个射击运动员连续射靶5次所得环数分别为8,6,10,7,9,则这个运动员所得环数的方差为______.
14. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P= °.
15. 如图是二次函数y=ax2+bx+c的图象的一部分,对称轴是直线x=1,
①b2>4ac;②4a-2b+c<0;③不等式ax2+bx+c>0的解集是x>3;④若(-2,y1),(5,y2)是抛物线上的两点,则y1<y2.
上述判断中,正确的是
16. 如图,正方形ABCD的边长为3,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为 .
三.解答题(共102分)
17.(6分) -14+3tan30°-+(2017+)0+()-2
18. (10分)先化简,再求值:
(1-)÷ 其中a=(-)-1
19.(10分)如图,某大楼的顶部竖有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底仰角为60
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
°,沿坡度为1:的坡面AB向上行走到B处,测得广告牌顶部C的仰角为45°,又知AB=10m,AE=15m,求广告牌CD的高度(精确到0.1m,测角仪的高度忽略不计)
20.(10分)某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元
(1)若他选择转动转盘1,则他能得到优惠的概率为多少?
(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.
21.(10分)2016年里约奥运会后,同学们参与体育锻炼的热情高涨,为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下频数分布表和扇形统计图。根据上述信息解答下列问题:
(1)m=____,n=____;
(2)在扇形统计图中,D组所占圆心角的度数是____;
(3)全校共有3000名学生,该校平均每周体育锻炼时间不少于6小时的学生约有多少名?
时间x(天)
1≤x<50
50≤x≤90
售价(元/件)
x+40
90
每天销(件)
200-2x
22. (10分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
已知该商品的进价为每件30元,设销售该商品的每天利润为y元
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元
23. (10分)为顺利通过“国家文明城市”验收,市政府拟对城区部分路段的人行道地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程.现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.
(1)甲、乙两个工程队单独完成此项工程各需多少天?
(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元,请你设计一种方案,既能按时完工,又能使工程费用最少.
24. (10分)如图在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于E交AB的延长线于点F,
(1)求证:EF是⊙O的切线;
(2)若AE=6,FB=4,求⊙O的面积.
25.(12分)菱形ABCD中,两条对角线AC,BD相交于点O,∠MON+∠BCD=180°,∠MON绕点O旋转,射线OM交边BC于点E,射线ON交边DC于点F,连接EF.
(1)如图1,当∠ABC=90°时,△OEF的形状是 ;
(2)如图2,当∠ABC=60°时,请判断△OEF的形状,并说明理由;
(3)在(1)的条件下,将∠MON的顶点移到AO的中点O′处,∠MO′N绕点O′旋转,仍满足∠MO′N+∠BCD=180°,射线O′M交直线BC于点E,射线O′N交直线CD于点F,当BC=4,且=时,直接写出线段CE的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(14分)如图,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).
(1)求抛物线F1所表示的二次函数的表达式及顶点Q的坐标;
(2)在抛物线上是否存在点P,使△BPC的内心在y轴上,若存在,求出点P的坐标,若不存在写出理由;
(3)直线y=kx-6与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M坐标。
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2016——2017学年度九年级第二次模拟考试答案详细版
一. 选择题
1.A 2.C 3.C 4.D 5.A 6.C 7.B 8.B
二. 填空题
9.
10.
11. m=7
12.
13. 2
14.
15. ①④
16.
三.解答题:
17. 4
18. 化简后结果:
当原式=
19.解:在Rt△ABH中,∵tan∠BAH===.∴∠BAH=30°∴BH=AB.sin∠BAH=10.sin30°=10×=5.
在Rt△ABH中,AH=AB.cos∠BAH=10.cos30°=5,
在Rt△ADE中,tan∠DAE=,
即tan60°=,∴DE=15,
如图,过点B作BF⊥CE,垂足为F,
∴BF=AH+AE=5+15,
DF=DE﹣EF=DE﹣BH=15﹣5,
在Rt△BCF中,∠C=90°﹣∠CBF=90°﹣45°=45°,
∴∠C=∠CBF=45°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴CF=BF=5+15,
∴CD=CF﹣DF=5+15﹣(15﹣5)=20﹣10≈20﹣10×1.732≈2.7(米),
答:广告牌CD的高度约为2.7米.
20.解:(1)∵整个圆被分成了12个扇形,其中有6个扇形能享受折扣,
∴P(得到优惠)==;
(2)转盘1能获得的优惠为:=25元,
转盘2能获得的优惠为:40×=20元,
所以选择转动转盘1更优惠.
21.(1)由统计表和扇形图可知:m=50×16%=8人;n=50﹣8﹣15﹣20﹣1﹣2=4人;
(2)扇形统计图中,D组所占圆心角的度数=360×=144度;
(3)该校平均每周体育锻炼时间不少于6小时的学生站的百分比==78%,则3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有3000×78%=2340人.
22.解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,
当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,
综上所述:y=;
(2)当1≤x<50时,
y=﹣2x2+180x+2000,
y=﹣2(x﹣45)2+6050.
∴a=﹣2<0,
∴二次函数开口下,二次函数对称轴为x=45,
当x=45时,y最大=6050,
当50≤x≤90时,y随x的增大而减小,
当x=50时,y最大=6000,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;
(3)①当1≤x<50时,y=﹣2x2+180x+2000≥4800,
解得:20≤x<70,
因此利润不低于4800元的天数是20≤x<50,共30天;
②当50≤x≤90时,y=﹣120x+12000≥4800,
解得:x≤60,
因此利润不低于4800元的天数是50≤x≤60,共11天,
所以该商品在整个销售过程中,共41天每天销售利润不低于4800元.
23.解:(1)设甲工程队单独完成该工程需x天,则乙工程队单独完成该工程需2x天,由题意得
=
解得:x=15,
经检验,x=15是原分式方程的解,
2x=30.
答:甲工程队单独完成此项工程需15天,乙工程队单独完成此项工程需30天.
(2)设甲工程队做a天,乙工程队做b天
根据题意得 a/15+b/30=1
整理得b+2a=30,即b=30﹣2a
所需费用w=4.5a+2.5b=4.5a+2.5(30﹣2a)=75﹣0.5a
根据一次函数的性质可得,a 越大,所需费用越小,
即a=15时,费用最小,最小费用为75﹣0.5×15=67.5(万元)
所以选择甲工程队,既能按时完工,又能使工程费用最少.
答:选择甲工程队,既能按时完工,又能使工程费用最少.
24.(1)证明:连结AD、OD,如图,
∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC,
∵AB=AC,
∴BD=CD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
而OA=OB,
∴OD为△ABC的中位线,
∴OD∥AC,
∵EF⊥AC,
∴OD⊥EF,
∴EF是⊙O的切线;
(2)解:设⊙O的半径为R,
∵OD∥AE,
∴△FOD∽△FAE,
∴=,即=,
解得R=4,
∴⊙O的面积=π•42=16π.
25.(1)△OEF是等腰直角三角形;
证明:如图1,∵菱形ABCD中,∠ABC=90°,
∴四边形ABCD是正方形,
∴OB=OC,∠BOC=90°,∠BCD=90°,∠EBO=∠FCO=45°,
∴∠BOE+∠COE=90°,
∵∠MON+∠BCD=180°,
∴∠MON=90°,
∴∠COF+∠COE=90°,
∴∠BOE=∠COF,
在△BOE与△COF中,
,
∴△BOE≌△COF(ASA),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴OE=OF,
∴△OEF是等腰直角三角形;
故答案为等腰直角三角形;
(2)△OEF是等边三角形;
证明:如图2,过O点作OG⊥BC于G,作OH⊥CD于H,
∴∠OGE=∠OGC=∠OHC=90°,
∵四边形ABCD是菱形,
∴CA平分∠BCD,∠ABC+BCD=180°,
∴OG=OH,∠BCD=180°﹣60°=120°,
∵∠GOH+∠OGC+∠BCD+∠OHC=360°,
∴∠GOH+∠BCD=180°,
∴∠MON+∠BCD=180°,
∴∠GOH=∠EOF=60°,
∵∠GOH=∠GOF+∠FOH,∠EOF=∠GOF+∠EOG,
∴∠EOG=∠FOH,
在△EOG与△FOH中,
,
∴△EOG≌△FOH(ASA),
∴OE=OF,
∴△OEF是等边三角形;
(3)证明:如图3,∵菱形ABCD中,∠ABC=90°,
∴四边形ABCD是正方形,
∴=,
过O点作O′G⊥BC于G,作O′H⊥CD于H,
∴∠O′GC=∠O′HC=∠BCD=90°,
∴四边形O′GCH是矩形,
∴O′G∥AB,O′H∥AD,
∴===,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵AB=BC=CD=AD=4,
∴O′G=O′H=3,
∴四边形O′GCH是正方形,
∴GC=O′G=3,∠GO′H=90°
∵∠MO′N+∠BCD=180°,
∴∠EO′F=90°,
∴∠EO′F=∠GO′H=90°,
∵∠GO′H=∠GO′F+∠FO′H,∠EO′F=∠GO′F+∠EO′G,
∴∠EO′G=∠FO′H,
在△EO′G与△FO′H中,
,
∴△EO′G≌△FO′H(ASA),
∴O′E=O′F,
∴△O′EF是等腰直角三角形;
∵S正方形ABCD=4×4=16,=,
∴S△O′EF=18,
∵S△O′EF=O′E2,
∴O′E=6,
在RT△O′EG中,EG===3,
∴CE=CG+EG=3+3.
根据对称性可知,当∠M′ON′旋转到如图所示位置时,
CE′=E′G﹣CG=3﹣3.
综上可得,线段CE的长为3+3或3﹣3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(1)令y=0代入y=x+4,
∴x=﹣3,A(﹣3,0),
令x=0,代入y=x+4,∴y=4,∴C(0,4),
设抛物线F1的解析式为:y=a(x+3)(x﹣1),
把C(0,4)代入上式得,a=﹣,
∴y=﹣x2﹣x+4,Q
(2)∵点B的坐标为(1,0),
取点B关于y轴的对称点B′(﹣1,0),连接CB′,
则∠BCO=∠B′CO,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴△BPC的内心在y轴上,直线B′C的解析式为y=4x+4,
联立,
∴点P的坐标为(﹣5,﹣16);
(3) N(0,-6),直线AC的表达式为,
当△MNC∽△AOC时,①∠CMN为直角
设 ,根据勾股定理可得
②当∠CNM为直角时,MN∥x轴,∴
由莲山课件提供http://www.5ykj.com/ 资源全部免费