七年级数学上1.3截一个几何体同步练习(北师大含答案和解析)
加入VIP免费下载

本文件来自资料包: 《七年级数学上1.3截一个几何体同步练习(北师大含答案和解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
北师大版数学七年级上册第一章第3节截一个几何体课时练习 一、单选题(共15小题)‎ ‎1、用一个平面去截一个圆柱体,截面不可能的是(    ) ‎ A、 B、 C、 D、 ‎ ‎2、下面是一个正方体,用一个平面去截这个正方体截面形状不可能为下图中的(   ) ‎ A、 B、 C、 D、 ‎ ‎3、用一平面去截下列几何体,其截面可能是长方形的有(   ) ‎ A、1个 B、2个 C、3个 D、4个 ‎4、长方体的截面中,边数最多的多边形是(   ) ‎ A、四边形 B、五边形 C、六边形 D、七边形 ‎5、如图中,几何体的截面形状是(   ) ‎ A、 B、 C、 D、 ‎ ‎6、用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,得到截面是圆的图有(     ) ‎ A、①②④ B、①②③ C、②③④ D、①③④‎ ‎7、如图所示的正方体,用一个平面截去它的一个角,则截面不可能是(    ) ‎ A、锐角三角形 B、等腰三角形 C、等腰直角三角形 D、等边三角形 ‎8、如图是正方体分割后的一部分,它的另一部分为下列图形中的(   ) ‎ A、 B、 C、 D、 ‎ ‎9、用平面去截下列几何体,不能截出三角形的是(   ) ‎ A、 B、 ‎ C、 D、 ‎ ‎10、用平面去截一个三棱柱不能得到(   ) ‎ A、三角形 B、四边形 C、五边形 D、六边形 ‎11、下列说法正确的是(   ) ‎ A、球的截面可能是椭圆 B、组成长方体的各个面中不能有正方形 C、五棱柱一共有15条棱 D、正方体的截面可能是七边形 ‎12、下面几何体截面一定是圆的是(   ) ‎ A、圆柱 B、圆锥 C、球 D、圆台 ‎13、用一个平面分别去截:①球;②四棱柱;③圆锥;④圆柱;⑤正方体.截面可能是三角形的有(   ) ‎ A、4个 B、3个 C、2个 D、1个 ‎14、下列几何体中:正方体,长方体,圆柱,六棱柱,圆锥,球,截面的形状可以为长方形的个数为(   ) ‎ A、3个 B、4个 C、5个 D、6个 ‎15、用平面去截一个几何体,如果截面是圆形,则原几何体可能是(   ) ‎ A、正方体、球 B、圆锥、棱柱 ‎ C、球、长方体 D、圆柱、圆锥、球 二、填空题(共5小题)‎ ‎16、用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱________.(写出所有正确结果的序号). ‎ ‎17、如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是选项中的________(填序号) ‎ ‎18、如图,截去正方体一角变成的多面体有________条棱. ‎ ‎19、如图中几何体的截面分别是________. ‎ ‎20、用一个平面去截一个几何体,截面形状有圆、三角形,那么这个几何体可能是________。 ‎ 三、解答题(共5小题)‎ ‎21、如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2 , 那么这根木料本来的体积是多少? ‎ ‎22、一次课外活动中,小东用小刀将一个泥塑正方体一刀切下去,请你猜猜看他切下的多面体可能是哪些柱体或锥体? ‎ ‎23、一个四棱柱被一刀切去一部分,试举例说明剩下的部分是否可能还是四棱柱. ‎ ‎24、如图所示,说出下列几何体截面(阴影部分)的形状.‎ ‎25、如图,有一个立方体,它的表面涂满了红色,在它每个面上切两刀,得到27个小立方体,而且凡是切面都是白色. ‎ ‎ 问: ‎ ‎(1)小立方体中三面红的有几块?两面红的呢?一面红的呢?没有红色的面呢? ‎ ‎(2)如果每面切三刀,情况又怎样呢? ‎ ‎(3)每面切n刀呢? ‎ 答案解析部分 一、单选题(共15小题) ‎ ‎1、【答案】B 【考点】截一个几何体 【解析】【解答】当截面与轴截面平行时,得到的形状为长方形;当截面与轴截面垂直时,得到的截面形状是圆;当截面与轴截面斜交时,得到的截面的形状是椭圆;所以截面的形状不可能是等腰梯形.【分析】截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关,根据从不同角度截得几何体的形状进行判断. ‎ ‎2、【答案】D 【考点】截一个几何体 【解析】【解答】无论如何去截,截面也不可能有弧度,因此截面不可能是圆.【分析】正方体有六个面,正方体的截面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.无论如何去截,截面也不可能有弧度,因此截面不可能是圆. ‎ ‎3、【答案】C 【考点】截一个几何体 【解析】【解答】圆锥与圆台不可能得到长方形截面,故能得到长方形截面的几何体有:长方体、圆柱、四棱柱一共有3个 【分析】根据长方体、圆锥、圆柱、四棱柱、圆台的形状判断,关键要理解面与面相交得到线. ‎ ‎4、【答案】C 【考点】截一个几何体 【解析】【解答】长方体的截面中,边数最多的多边形是六边形.【分析】分析截面的边数时,看截线可能经过几个面,即是几边形;长方体的截面,最多可以经过6个面,所以边数最多的截面是六边形. ‎ ‎5、【答案】B 【考点】截一个几何体 【解析】【解答】由图可知经过圆锥顶点的平面截圆锥所得的截面是个等腰三角形.【分析】经过圆锥顶点的平面与圆锥的侧面和底面截得的都是一条线,考查圆锥的截面问题,关键要理解面与面相交得到线. ‎ ‎6、【答案】B 【考点】截一个几何体 【解析】【解答】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断. ‎ ‎7、【答案】C 【考点】截一个几何体 【解析】【解答】截面经过正方体的3个面时,得到三角形,但任意两条线段不可能垂直,所以截面不可能是等腰直角三角形.【分析】让截面经过正方体的三个面,判断其具体形状. ‎ ‎8、【答案】B 【考点】截一个几何体 【解析】【解答】将原图形顺时针旋转90°,可知变换后的图形与选项B相符.【分析】将原图形顺时针或逆时针旋转,将原图形实线改虚线,虚线改实线,并与选项进行比较,充分利用图形旋转变换,图形的实线虚线的互相转化解题. ‎ ‎9、【答案】B 【考点】截一个几何体 【解析】【解答】A.过长方体的三个面得到的截面是三角形,符合题意;B.过圆柱的三个面得到的截面与圆和四边形有关,不符合题意; C.过三棱柱的三个面得到的截面是三角形,符合题意; D.过圆锥的顶点和下底圆心的面得到的截面是三角形,符合题意. 【分析】截一个几何体,解题的关键是截面的形状既与被截的几何体有关,还与截面的角度和方向有关. ‎ ‎10、【答案】D 【考点】截一个几何体 【解析】【解答】用平面去截一个三棱柱,其截面的形状共有四种,分别为:矩形、三角形、梯形、五边形.【分析】根据平面截三棱柱的不同角度与位置判断相应截面形状. ‎ ‎11、【答案】C 【考点】认识立体图形,截一个几何体 【解析】【解答】A.球的截面是圆,故错误;B.组成长方体的各个面中可能有2个正方形,故错误; C.五棱柱一共有15条棱,故正确; D.正方体的截面不可能是七边形,故错误. 【分析】利用本题中截面的特殊性,截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关. ‎ ‎12、【答案】C 【考点】截一个几何体 【解析】【解答】圆柱的截面有可能为矩形,圆锥的截面有可能为三角形,圆台的截面有可能为梯形,圆的截面一定是圆.【分析】分别分析四个几何体截面的形状,即可. ‎ ‎13、【答案】B 【考点】截一个几何体 【解析】【解答】①球不能截出三角形;②四棱柱能截出三角形;③圆锥能截出三角形;④圆柱不能截出三角形;⑤正方体能截出三角形;【分析】当截面的角度和方向不同时,球、圆柱体的截面无论什么方向截取圆柱都不会截得三角形. ‎ ‎14、【答案】B 【考点】截一个几何体 【解析】【解答】正方体,长方体,圆柱,六棱柱的截面的形状可以为长方形;圆锥的截面只与圆、三角形有关;球的截面只与圆有关.【分析】截面的形状既与被截的几何体有关,还与截面的角度和方向有关.亲自动手做一做,从中学会分析和归纳的思想方法. ‎ ‎15、【答案】D 【考点】截一个几何体 ‎ ‎【解析】【解答】用平面去截球体,圆锥、圆柱,截面是圆,【分析】认识几何体的截面只是几何体的其中一个方面的体现,同一个几何体可能会有不同的截面,不同的几何体也可能会有相同的截面. ‎ 二、填空题(共5小题) ‎ ‎16、【答案】①③④ 【考点】截一个几何体 【解析】【解答】①正方体能截出三角形;②圆柱不能截出三角形;③圆锥沿着母线截几何体可以截出三角形;④正三棱柱能截出三角形.故截面可能是三角形的有3个. 【分析】当截面的角度和方向不同时,圆柱体的截面无论什么方向截取圆柱都不会截得三角形. ‎ ‎17、【答案】4 【考点】截一个几何体 【解析】【解答】用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为圆. 【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此截面的形状可能是:三角形、四边形、五边形、六边形. ‎ ‎18、【答案】12 【考点】截一个几何体 【解析】【解答】仔细观察图形,正确地数出多面体的棱数12. 【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.对于一个多面体:顶点数+面数﹣棱数=2. ‎ ‎19、【答案】长方形,等腰三角形 【考点】截一个几何体 【解析】【解答】①中几何体的截面是矩形,②中几何体的截面是等腰三角形 【分析】①根据正方体的边相等,可得截面对边的关系,根据矩形的判定;②根据圆锥的母线相等,可得三角形边的关系,根据等腰三角形的定义,可解. ‎ ‎20、【答案】圆锥 【考点】截一个几何体 【解析】【解答】∵用一个平面去截一个圆锥时,截面形状有圆、三角形, ∴这个几何体可能是圆锥. 【分析】根据圆锥的主视图有三角形和圆,要熟练掌握各种几何图形. ‎ 三、解答题(共5小题) ‎ ‎21、【答案】3200cm3 解答:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为80÷4=20cm2 , ∴这根木料本来的体积是:1.6×100×20=3200(cm3) 【考点】几何体的表面积 【解析】【分析】根据长方体的切割特点:切割成三段后,表面积是增加了4个长方体的侧面的面积,求出这根木料的侧面积,再利用长方体的体积公式即可解答. ‎ ‎22、【答案】三棱柱、四棱柱、五棱柱或三棱锥 解答:用小刀将一个泥塑正方体一刀切下去,切下的多面体可能是三棱柱、四棱柱、五棱柱或三棱锥. ‎ ‎【考点】截一个几何体 【解析】【分析】截面的形状随截法的不同而不同,一般是多边形或圆,截面与几何体的几个面相交就得到几条交线,截面就是几边形. ‎ ‎23、【答案】可能是四棱柱 解答:沿垂直于轴截面一刀切去一部分,可得到一个四棱柱. 故一个四棱往被一刀切去一部分,剩下的部分可能还是四棱柱. 【考点】截一个几何体 【解析】【分析】三棱柱、四棱柱、五棱柱都有可能,关键是看切的位置:沿垂直于轴截面一刀切去一部分,可得到一个四棱柱. ‎ ‎24、【答案】三角形截面,等腰三角形截面,长方形截面,圆形截面 解答:(1)切了三个面,可以得到三角形截面;(2)沿圆锥的高线切割,可得到等腰三角形截面;(3)沿正方体的对角线切割,可得到长方形截面;(4)截面与底平行,可以得到圆形截面. 【考点】截一个几何体 【解析】【分析】截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关. ‎ ‎25、【答案】(1)小立方体中三面红的有8块,两面红的12块,一面红的6块,没有红色的1块. (2)如果每面切三刀,小立方体中三面红的有8块,两面红的24块,一面红的24块,没有红色的8块. (3)每面切n刀,小立方体中三面红的有8块,两面红的6(2n﹣2)块,一面红的6(n﹣1)2块,没有红色的(n﹣1)3块. 【考点】截一个几何体 【解析】【分析】(1)三面红色对应8个顶角上的小立方块,8个;两面红色对应6条边每条中间的那2小立方块,12个;一面红色对应6个面每个面中心的那个小立方块,6个;最后各面都没有颜色对应大立方体中心的那个小立方块,1个;(2)每面切三刀,可得64个小立方体,三面红色对应8个顶角上的小立方块,8个;两面红色对应6条边每条中间的那4小立方块,24个;一面红色对应6个面每个面中心的那4小立方块,24个;最后各面都没有颜色对应大立方体中心的那个小立方块,23=8个;(3)每面切n刀,可得n3个小立方体,三面红色对应8个顶角上的小立方块,8个;两面红色对应6条边每条中间的那(2n﹣2)小立方块,6(2n﹣2)个;一面红色对应6个面每个面中心的那(n﹣1)2小立方块,6(n﹣1)2个;最后各面都没有颜色对应大立方体中心的那个小立方块,(n﹣1)3个; ‎

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料