由莲山课件提供http://www.5ykj.com/ 资源全部免费
揭阳市2016-2017学年度高中二年级学业水平考试
数学(理科)
(测试时间120分钟,满分150分)
注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答第Ⅰ卷时,选出每个小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.
3.回答第Ⅱ卷时,将答案写在答题卡上,答在本试卷上无效.
4.考试结束,将本试卷和答题卡一并交回.
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,
只有一项是符合题目要求的.
(1)若集合,,则
(A){1,2} (B){0,1,2} (C) (D)
(2)已知是虚数单位,若复数的实部与虚部相等,则的共轭复数=
(A) (B) (C) (D)
(3)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b没有公共点”是“平面α和平面β平行”的
(A)充分不必要条件 (B)必要不充分条件
(C)充要条件 (D)既不充分也不必要条件
(4)若,且,则的值为
(A) (B) (C) (D)
(5)已知抛物线的焦点是椭圆的一个焦点,则椭圆的离心率为
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(A) (B) (C) (D)
(6)在图1的程序框图中,若输入的x值为2,则输出的y值为 (A)0 (B) (C) (D)
(7)已知向量,,则函
数的最小正周期为
(A) (B) (C) (D)
(8)在区间上随机选取一个数,若的概率为,则
实数的值为
(A) (B)2 (C)4 (D)5
(9)某几何体的三视图如图2所示,则该几何体的表面积是
(A) (B) (C) (D)
(10)在同一平面直角坐标系中,函数的图象与的图象关于直线对称,而函数的图象与的图象关于轴对称,若,则的值是
(A) (B)2 (C)-2 (D)
(11)已知直线:,点,. 若直线上存在点满足,则实数 的取值范围为
(A) (B) (C) (D)
(12) 已知函数=,若存在唯一的零点,且,则的取值范围为
(A) (B) (C) (D)
第Ⅱ卷
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
本卷包括必考题和选考题两部分.第(13)题∽第(21)题为必考题,每个试题考生都必须做答.第(22)题∽第(23)题为选考题,考生根据要求做答.
二、填空题:本大题共4小题,每小题5分,共20分,请把正确的答案填写在答题
卡相应的横线上.
(13)展开式中常数项是 .
(14)已知实数满足不等式组,则的最小值为 .
(15)某次数学竞赛后,小军、小民和小乐分列前三名.老师猜测:“小军第一名,小民不是第一
名,小乐不是第三名”.结果老师只猜对一个,由此推断:前三名依次为 .
(16)在△ABC中,角的对边分别为,已知是、的等差中项,且,
则△面积的最大值为 .
三、解答题:本大题必做题5小题,选做题2小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分12分)
已知等差数列满足;数列满足,,数列为等比数列.
(Ⅰ)求数列和的通项公式;
(Ⅱ)求数列的前n项和.
(18)(本小题满分12分)
如图3,已知四棱锥的底面为矩形,D为
的中点,AC⊥平面BCC1B1.
(Ⅰ)证明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的长;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)求B1D与平面ABB1所成角的正弦值.
(19)(本小题满分12分) 图3
某地区以“绿色出行”为宗旨开展“共享单车”业务.该地区某高级中学一兴趣小组由20名高二级学生和15名高一级学生组成,现采用分层抽样的方法抽取7人,组成一个体验小组去市场体验“共享单车”的使用.问:
(Ⅰ)应从该兴趣小组中抽取高一级和高二级的学生各多少人;
(Ⅱ)已知该地区有,两种型号的“共享单车”,在市场体验中,该体验小组的高二级学生都租型车,高一级学生都租型车.
(1)如果从组内随机抽取3人,求抽取的3人中至少有2人在市场体验过程中租型车的概率;
(2)已知该地区型车每小时的租金为1元,型车每小时的租金为1.2元,设为从体验小组内随机抽取3人得到的每小时租金之和,求的数学期望.
(20)(本小题满分12分)
已知如图4,圆、椭圆均
经过点M,圆的圆心为,椭圆的两
焦点分别为.
(Ⅰ)分别求圆和椭圆的标准方程;
(Ⅱ)过作直线与圆交于、两点,试探究是否为定值?若是定值,求出该定值;若不是,说明理由.
(21)(本小题满分12分)
已知函数.
(Ⅰ)确定函数的单调性;
(Ⅱ)证明:函数在上存在最小值.
请考生在(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分.
(22)(本小题满分10分)选修4-4:坐标系与参数方程
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
将圆上每一点的纵坐标不变,横坐标变为原来的,得曲线C.
(Ⅰ)写出C的参数方程;
(Ⅱ)设直线l:与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.
(23)(本小题满分10分)选修4-5:不等式选讲
设函数.
(Ⅰ)若,解不等式;
(Ⅱ)如果当时,,求a的取值范围.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
揭阳市2016-2017学年度高中二年级学业水平考试
数学(理科)参考答案及评分说明
一、本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.
二、对计算题当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.
三、解答右端所注分数,表示考生正确做到这一步应得的累加分数.
四、只给整数分数.
一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
C
B
A
D
C
A
C
B
B
C
D
部分解析:
(9)依题意知,该几何体是底面为直角梯形的直棱柱,故其表面积为.
(10)由题知则,.
(11)问题转化为求直线与圆有公共点时,的取值范围,数形结合易得.
(12)当时,函数有两个零点,不符合题意,故,,令得或,由题意知,,且,解得.
二、填空题:
题号
13
14
15
16
答案
60
-2
小民、小乐、小军
(16)由得,由余弦定得,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
即,又(当且仅当时等号成立)得,所以
,即△面积的最大值为.
三、解答题:
(17)解:(Ⅰ)由数列是等差数列且
∴公差,----------------------------------------------------1分
∴,-------------------------------------3分
∵=3,=9,∴
∴数列的公比,--------------------------------------5分
∴,
∴;------------------------------------------------------------7分
(Ⅱ)由得
-------------------------------------------9分
.---------------------------------------------------------------------------------12分
(18)解:(Ⅰ)证明:连结交于E,连结DE,--------------------------------1分
∵D、E分别为和的中点,
∴DE//AB,---------------------------------------------------------------------------- ---- --------2分
又∵平面,平面,
∴AB//平面CDB1;------------------------------------------4分
(Ⅱ)(1)∵AC⊥平面BCC1B1,平面,
∴,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
又∵,,
∴平面,
∵平面,
∴,---------------------------------------------------------------------------------6分
在,∵BC=1,,
∴;------------------------------------------------------------------------------------8分
【注:以上加灰色底纹的条件不写不扣分!】
(2)依题意知AC、BC、CC1两两互相垂直,
以C为原点,CB所在的直线为x轴、CC1为y轴建立
空间直角坐标系如图示,
易得,,
,,
故,,,----------------------------------------9分
设平面的一个法向量为,
由得令得,-------------------------------10分
设与平面所成的角为,则,
即与平面所成的角的正弦值为.---------------------------------------------------12分
【其它解法请参照给分,如先用体积法求出点D到平面ABB1的距离,(10分)再用公式算与平面所成角的正弦值(12分)】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(19) 解:(Ⅰ)依题意知,应从该兴趣小组中抽取的高一学生人数为,--2分
高二学生的人数为:;--------------------------------------------------------------4分
(Ⅱ)(1)解法1:所求的概率.-----------------------------------7分
【解法2:所求概率.-------------------------------------------------7分
(2)从小组内随机抽取3人, 得到的的可能取值为:3,3.2,3.4,3.6.(元)--------------8分
因
----------------------------------10分
故的数学期望.(元)-----------------------12分
(20)解:(Ⅰ)依题意知圆C的半径,----------------------------1分
∴圆C的标准方程为:;------------------------------------------------2分
∵椭圆过点M,且焦点为、,
由椭圆的定义得:,
即,----------------------------------------------------------4分
∴,,
∴椭圆E的方程为:-----------------------------------------------------------------------------6分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【其它解法请参照给分】
(Ⅱ)显然直线的斜率存在,设为,则的方程为,
由消去得:
,-------------------------------------------------------8分
显然有解,
设、,则,----------------------------------------------------------9分
.
故为定值,其值为2.-------------------------------------------------------- ----------12分
(21)解:(Ⅰ)函数的定义域为,-----------------------------1分
,-------------------------------4分
∴函数在和上单调递增;---------------------------------------------5分
(Ⅱ)
,---------------------------------------------------------------8分
由(Ⅰ)知在单调递增;
∴在上也单调递增;
∵,,-----------------------------------------------------10分
∴存在,有,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当时,0,得, --------------------------------------------11分
∴在上递减,在上递增,
故函数在上存在最小值,.--------------------------------------------12分
选做题:
(22)解:(Ⅰ)由坐标变换公式 得---------------------------2分
代入中得,-------------------------------------------------------------3分
故曲线C的参数方程为为参数);-----------------------------------------5分
(Ⅱ)由题知,,-------------------------------------------------------6分
故线段P1 P2中点,---------------------------------------------------------7分
∵直线的斜率∴线段P1 P2的中垂线斜率为,
故线段P1 P2的中垂线的方程为--------------------------------------------------------8分
即,将代入得
其极坐标方程为---------------------------------------------------------10分
(23)解:(Ⅰ)当a=-2时,f(x)=|x-2|+|x+2|,
①当时,原不等式化为:解得,从而;-----------------1分
②当时,原不等式化为:,无解;---------------------------------------------2分
③当时,原不等式化为:解得,从而;----------------------------3分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
综上得不等式的解集为.-------------------------------------------------------------5分
(Ⅱ)当时, ---------------------------------7分
所以当时,等价于-----()
当时,()等价于解得,从而;-------------------------8分
当时,()等价于无解;--------------------------------------------------9分
故所求的取值范围为.----------------------------------------------------10分
由莲山课件提供http://www.5ykj.com/ 资源全部免费