2018年中考总复习精练第3章第9讲一次函数及其应用(有答案)
加入VIP免费下载

本文件来自资料包: 《2018年中考总复习精练第3章第9讲一次函数及其应用(有答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 第九讲 一次函数及其应用 第1课时 一次函数 ‎1.下列说法中不正确的是( D )‎ A.函数y=2x的图象经过原点 B.函数y=的图象位于第一、三象限 C.函数y=3x-1的图象不经过第二象限 D.函数y=-的值随x的值的增大而增大 ‎2.(2017绥化中考)在同一平面直角坐标系中,直线y=4x+1与直线y=-x+b的交点不可能在( D )‎ A.第一象限    B.第二象限 C.第三象限 D.第四象限 ‎3.(2017呼和浩特中考)一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( A )‎ A.第一象限    B.第二象限 C.第三象限 D.第四象限 ‎4.(2017赤峰中考)将一次函数y=2x-3的图象沿y轴向上平移8个单位长度,所得直线的表达式为( B )‎ A.y=2x-5 B.y=2x+5‎ C.y=2x+8 D.y=2x-8‎ ‎5.若式子+(k-1)0有意义,则一次函数y=(1-k)x+k-1的图象可能是( C )‎ ‎,A) ,B) ,C) ,D)‎ ‎6.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( B )‎ ‎,A) ,B) ,C) ,D)‎ ‎7.(2017福建中考)若直线y=kx+k+1经过点(m,n+3)和(m+1,2n-1),且0<k<2,则n的值可以是( C )‎ A.3   B.‎4 ‎  C.5   D.6‎ ‎8.(2017陕西中考)如图,已知直线l1:y=-2x+4与l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是( D )‎ A.-2<k<2 B.-2<k<0‎ C.0<k<4 D.0<k<2‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎,(第8题图))   ,(第9题图))‎ ‎9.(2017菏泽中考)如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是( D )‎ A.x>2 B.x<2‎ C.x>-1 D.x<-1‎ ‎10.若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x+k的图象不经过第__一__象限.‎ ‎11.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是__x>3__.‎ ‎12.已知二元一次方程组的解为则在同一平面直角坐标系中,直线l1:y=x+5与直线l2:y=-x-1的交点坐标为__(-4,1)__.‎ ‎13.(2017台州中考)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).‎ ‎(1)求b,m的值;‎ ‎(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.‎ 解:(1)∵点P(1,b)在直线l1:y=2x+1上,‎ ‎∴b=2×1+1=3.‎ ‎∵点P(1,3)在直线l2:y=mx+4上,‎ ‎∴3=m+4,∴m=-1;‎ ‎(2)当x=a时,yC=‎2a+1;当x=a时,yD=4-a.∵CD=2,∴|‎2a+1-(4-a)|=2,解得a=或a=.‎ ‎14.如图,直线y=x+与两坐标轴分别交于A,B两点.‎ ‎(1)求∠ABO的度数;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)过A的直线l交x轴正半轴于C,AB=AC,求直线l的函数表达式.‎ 解:(1)对于直线y=x+,‎ 令x=0,则y=,‎ 令y=0,则x=-1,‎ ‎∴点A的坐标为(0,),点B的坐标为(-1,0),‎ 则AO=,BO=1,在Rt△ABO中,‎ ‎∵tan∠ABO==,‎ ‎∴∠ABO=60°;‎ ‎(2)在△ABC中,‎ ‎∵AB=AC,AO⊥BC,‎ ‎∴AO为BC的中垂线,即BO=CO,‎ ‎∴C点的坐标为(1,0).‎ 设直线l的表达式为y=kx+b(k,b为常数),‎ ‎∴解得 即直线l函数表达式为y=-x+.‎ ‎15.如图,一次函数y=kx+b(k<0)与反比例函数y=的图象相交于A,B两点,一次函数的图象与y轴相交于点C,已知点A(4,1).‎ ‎(1)求反比例函数的表达式;‎ ‎(2)连结OB(O是坐标原点),若△BOC的面积为3,求该一次函数的表达式.‎ 解:(1)∵点A(4,1)在反比例函数y=的图象上,‎ ‎∴m=4×1=4,‎ ‎∴反比例函数的表达式为y=;‎ ‎(2)∵点B在反比例函数y=的图象上,‎ ‎∴设点B的坐标为(n,).‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 将y=kx+b代入y=中,‎ 得kx+b=,‎ 整理,得kx2+bx-4=0,‎ ‎∴4n=-,‎ 即nk=-1①.‎ 令y=kx+b中x=0,‎ 则y=b,即点C的坐标为(0,b),‎ ‎∴S△BOC=bn=3,∴bn=6②.‎ ‎∵点A(4,1)在一次函数y=kx+b的图象上,‎ ‎∴1=4k+b③.‎ 联立①②③成方程组,得 解得 ‎∴该一次函数的表达式为y=-x+3.‎ ‎16.王杰同学在解决问题“已知A,B两点的坐标为A(3,-2),B(6,-5),求直线AB关于x轴的对称直线A′B′的表达式”时,解法如下:先是建立平面直角坐标系(如图),标出A,B两点,并利用轴对称性质求出A′,B′的坐标分别为A′(3,2),B′(6,5);然后设直线A′B′的表达式为y=kx+b(k≠0),并将A′(3,2),B′(6,5)代入y=kx+b中,得方程组解得最后求得直线A′B′的表达式为y=x-1.‎ 则在解题过程中他运用到的数学思想是( D )‎ A.分类讨论与转化思想 B.分类讨论与方程思想 C.数形结合与整体思想 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 D.数形结合与方程思想 ‎17.点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是( C )‎ ‎,A) ,B) ,C) ,D)‎ ‎18.如图,直线y=x+4与x轴,y轴分别交于点A和点B,点C,D分别为线段AB,OB的中点,点P为OA上一动点,当PC+PD值最小时,求点P的坐标.‎ 解:作点D关于x轴的对称点D′,连结CD′交x轴于点P,此时PC+PD值最小.‎ 在y=x+4中,令x=0,则y=4.‎ 令y=0,则x+4=0,解得x=-6,‎ ‎∴A(-6,0)B(0,4).‎ ‎∵点C,D分别为线段AB,OB的中点,‎ ‎∴点C(-3,2),点D(0,2).‎ ‎∵点D′和点D关于x轴对称,‎ ‎∴点D′的坐标为(0,-2).‎ 设直线CD′的表达式为y=kx+b.‎ ‎∵直线CD′过点C(-3,2),D′(0,-2),‎ ‎∴解得 ‎∴直线CD′的表达式为y=-x-2.‎ 令y=-x-2中y=0,则0=-x-2,‎ 解得x=-,‎ ‎∴点P的坐标为.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎19.(2017鹤岗中考)如图,矩形AOCB的顶点A,C分别位于x轴和y轴的正半轴上,线段OA,OC的长度满足方程|x-15|+=0(OA>OC),直线y=kx+b分别与x轴,y轴交于M,N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=.‎ ‎(1)求点B的坐标;‎ ‎(2)求直线BN的表达式;‎ ‎(3)将直线BN以每秒1个单位的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.‎ 解:(1)∵|x-15|+=0,‎ ‎∴x=15,y=13,‎ ‎∴OA=BC=15,AB=OC=13,‎ ‎∴B(15,13);‎ ‎(2)过D作EF⊥OA于点E,交CB于点F,‎ 由折叠的性质可知BD=BC=15,‎ ‎∠BDN=∠BCN=90°.‎ ‎∵tan∠CBD=,∴=.‎ 又∵BF2+DF2=BD2=152,‎ 解得BF=12,DF=9,‎ ‎∴CF=OE=15-12=3,‎ DE=EF-DF=13-9=4.‎ ‎∵∠CND+∠CBD=360°-90°-90°=180°,‎ 又∵∠ONM+∠CND=180°,‎ ‎∴∠ONM=∠CBD,∴=.‎ ‎∵DE∥ON,∴==,‎ 又∵OE=3,‎ ‎∴=,解得OM=6,‎ ‎∴ON=8,即N(0,8).‎ 把N,B的坐标代入y=kx+b可得,‎ 解得 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴直线BN的表达式为y=x+8;‎ ‎(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如答图①,‎ ‎,答图①)   ,答图②)‎ 由题意可知四边形BNN′B′为平行四边形,‎ 且NN′=t,‎ ‎∴S=NN′·OA=15t;‎ 当点N′在y轴负半轴上,即8<t≤13时,‎ 设直线B′N′交x轴于点G,如答图②,‎ ‎∵NN′=t,‎ ‎∴可设直线B′N′表达式为y=x+8-t,‎ 令y=0,可得x=3t-24,‎ ‎∴OG=24.‎ ‎∵ON=8,NN′=t,‎ ‎∴ON′=t-8,‎ ‎∴S=S四边形BNN′B′-S△OGN′=15t-(t-8)(3t-24)‎ ‎=-t2+39t-96.‎ 综上可知S与t的函数关系式为 S= 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 第2课时 一次函数的实际应用 ‎1.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是( D )‎ ‎                ‎ A.a<b B.a<‎3 C.b<3 D.c<-2‎ ‎2.如图,平面直角坐标系中,A点坐标为(2,2),点P(m,n)在直线y=-x+2上运动,设△APO的面积为S,则下面能够反映S与m的函数关系的图象是( B )‎ ‎,A) ,B) ,C) ,D)‎ ‎3.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是( C )‎ ‎,图①)   ,图②)‎ A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元 C.第12天与第30天这两天的日销售利润相等 D.第30天的日销售利润是750元 ‎4.(2017乌鲁木齐中考)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是( A )‎ A.x<2 B.x<‎0 C.x>0 D.x>2‎ ‎,(第4题图))  ,(第5题图))‎ ‎5.(2017株洲中考)如图所示,直线y=x+与x轴,y轴分别交于点A,B,当直线绕着点A按顺时针方向旋转到与x轴首次重合时,点B运动的路径的长度为__π__.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎6.已知一个函数,当x>0时, 函数值y随着x的增大而减小, 请写出这个函数关系式__y=-x+2(答案不唯一)__.(写出一个即可)‎ ‎7.(2017扬州中考)同一温度的华氏度数y(°F)与摄氏度数x(℃)之间的函数表达式是y=x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__-40__℃.‎ ‎8.(2017随州中考)在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.下列结论:①甲车出发2 h时,两车相遇;②乙车出发1.5 h时,两车相距‎170 km;③乙车出发2 h时,两车相遇;④甲车到达C地时,两车相距‎40 km.其中正确的是__②③④__.(填写所有正确结论的序号)‎ ‎9.(2017鹤岗中考)为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6 min忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,‎ 如图是小亮和姐姐距家的路程y(m)与出发的时间x(min)的函数图象,根据图象解答下列问题:‎ ‎(1)小亮在家停留了______min;‎ ‎(2)求小亮骑单车从家出发去图书馆时距家的路程y(m)与出发时间x(min)之间的函数关系式;‎ ‎(3)若小亮和姐姐到图书馆的实际时间为m min,原计划步行到达图书馆的时间为n min,则n-m=______min.‎ 解:(1)2;‎ ‎(2)设y=kx+b.‎ ‎∵函数图象过C(10,0),D(30,3 000),‎ ‎∴ 解得 ‎∴y=150x-1 500(10≤x≤30);‎ ‎(3)30‎ ‎10.(2017绥化中考)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5 h,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 轿车比卡车每小时多行驶‎60 km,两车到达甲城均停止行驶,两车之间的路程y(km)与轿车行驶时间t(h)的函数图象如图所示,请结合图象提供的信息解答下列问题:‎ ‎(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;‎ ‎(2)求轿车在乙城停留的时间,并直接写出点D的坐标;‎ ‎(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(km)与轿车行驶时间t(h)之间的函数关系式.(不要求写出自变量的取值范围)‎ 解:(1)甲城和乙城之间的路程为‎180 km.‎ 设卡车的速度为x km/h,则轿车的速度为(x+60)km/h.‎ 由B(1,0)得,x+(x+60)=180,‎ 解得x=60,∴x+60=120,‎ ‎∴轿车和卡车的速度分别为‎120 km/h和‎60 km/h;‎ ‎(2)卡车到达甲城需180÷60=3(h),‎ 轿车从甲城到乙城需180÷120=1.5(h),‎ ‎3+0.5-1.5×2=0.5(h),‎ ‎∴轿车在乙城停留了0.5 h,‎ 点D的坐标为(2,120);‎ ‎(3)s=180-120×(t-0.5-0.5)=-120t+420.‎ ‎11.(2017苏州中考)某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(kg)的一次函数.已知行李质量为‎20 kg时需付行李费2元,行李质量为‎50 kg时需付行李费8元.‎ ‎(1)当行李的质量x超过规定时,求y与x之间的函数表达式;‎ ‎(2)求旅客最多可免费携带行李的质量.‎ 解:(1)设y与x的函数表达式为y=kx+b.‎ 根据题意,得解得 ‎∴函数表达式为y=x-2;‎ ‎(2)当y=0时,x-2=0,解得x=10.‎ 答:旅客最多可免费携带行李‎10 kg.‎ ‎12.(2017连云港中考)某蓝莓种植生产基地产销两旺,采摘的蓝莓部分加工销售,部分直接销售,且当天都能销售完.直接销售是40元/斤,加工销售是130元/斤(不计损耗).已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x名工人采摘蓝莓,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 剩下的工人加工蓝莓.‎ ‎(1)若基地一天的总销售收入为y元,求y与x的函数关系式;‎ ‎(2)如何分配工人,才能使一天的销售收入最大?并求出最大值.‎ 解:(1)根据题意,得y=[70x-(20-x)×35]×40+(20-x)×35×130=-350x+63 000;‎ ‎(2)∵70x≥35(20-x),解得x≥.‎ 又∵x为正整数,且x≤20,‎ ‎∴7≤x≤20且x为正整数,‎ ‎∵-350<0,‎ ‎∴y的值随着x的值增大而减小.‎ ‎∴当x=7时,y取最大值,‎ 最大值为-350×7+63 000=60 550.‎ 答:安排7名工人进行采摘,13名工人进行加工,才能使一天的收入最大,最大收入为60 550元.‎ ‎13.(2017江汉中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲,y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示.‎ ‎(1)直接写出y甲,y乙关于x的函数关系式;‎ ‎(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?‎ 解:(1)y甲=0.8x;‎ y乙= ‎(2)当0<x<2 000时,0.8x<x,‎ 到甲商店购买更省钱;‎ 当x≥2 000时,‎ 若到甲商店购买更省钱,‎ 则0.8x<0.7x+600,解得x<6 000;‎ 若到乙商店购买更省钱,‎ 则0.8x>0.7x+600,解得x>6 000;‎ 若到甲、乙两商店购买一样省钱,‎ 则0.8x=0.7x+600,解得x=6 000;‎ 故当购买金额按原价小于6 000元时,‎ 到甲商店购买更省钱;‎ 当购买金额按原价大于6 000元时,‎ 到乙商店购买更省钱;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 当购买金额按原价等于6 000元时,‎ 到甲、乙两商店购买花钱一样.‎ ‎14.(2017乌鲁木齐中考)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(km)与行驶时间x(h)的对应关系如图所示.‎ ‎(1)甲乙两地相距多远?‎ ‎(2)求快车和慢车的速度分别是多少?‎ ‎(3)求出两车相遇后y与x之间的函数关系式;‎ ‎(4)何时两车相距‎300 km.‎ 解:(1)由图象得甲乙两地相距‎600 km;‎ ‎(2)由题意得慢车总用时10 h,‎ ‎∴慢车速度为=60(km/h);‎ 设快车速度为x km/h.‎ 由图象,得60×4+4x=600,解得x=90,‎ ‎∴快车速度为‎90 km/h,慢车速度为‎60 km/h;‎ ‎(3)由图象,得=(h),60×=400(km),‎ 当时间为 h时快车已到达甲地,此时慢车走了‎400 km,‎ ‎∴两车相遇后y与x的函数关系式为 ‎(4)设出发x h后,两车相距‎300 km.‎ ‎①当两车没有相遇时,‎ 由题意,得60x+90x=600-300,解得x=2;‎ ‎②当两车相遇后,‎ 由题意,得60x+90x=600+300,解得x=6;‎ ‎∴两车行驶2 h或6 h时,两车相距‎300 km.‎ ‎15.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为‎30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为‎20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(1)小聪上午几点钟从飞瀑出发?‎ ‎(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义.‎ ‎(3)如果小聪到达宾馆后,立即以‎30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?‎ 解:(1)小聪骑车从飞瀑出发到宾馆所用时间为:‎ ‎50÷20=2.5(h),‎ ‎∵上午10:00小聪到达宾馆,‎ ‎∴小聪上午7点30分从飞瀑出发; ‎ ‎(2)3-2.5=0.5,∴点G的坐标为(0.5,50),‎ 设GH的表达式为s=kt+b,‎ 把G(0.5,50),H(3,0)代入,得 解得 ‎∴s=-20t+60,当s=30时,t=1.5,‎ ‎∴B点的坐标为(1.5,30),‎ 点B的实际意义是当小慧出发1.5 h时,小慧与小聪相遇,且离宾馆的路程为‎30 km;‎ ‎(3)50÷30=(h)=1小时40分钟,‎ ‎12-=10,‎ ‎∴当小慧在D点时,对应的时间点是10:20,‎ 而小聪到达宾馆返回的时间是10:00,‎ 设小聪返回x h后两人相遇.根据题意,得 ‎30x+30=50,‎ 解得x=1,‎ ‎10+1=11,‎ ‎∴小聪到达宾馆后,立即以‎30 km/h的速度按原路返回,那么返回途中他11:00遇见小慧.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料