由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年江苏省苏州市中考数学模拟试卷(2)
一、选择题(本大题共10小题,每小题2分,满分20分,每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(2分)2017的相反数是( )
A.2017 B.﹣2017 C. D.﹣
2.(2分)下列运算正确的是( )
A.a2•a3=a6 B.5a﹣2a=3a2 C.(a3)4=a12 D.(x+y)2=x2+y2
3.(2分)下列几何体中,主视图和俯视图都为矩形的是( )
A. B. C. D.
4.(2分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠1
5.(2分)11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数 B.中位数 C.众数 D.方差
6.(2分)下列命题中,错误的是( )
A.两组对边分别平行的四边形是平行四边形
B.有一个角是直角的平行四边形是矩形
C.有一组邻边相等的平行四边形是菱形
D.内错角相等
7.(2分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.π B.π C. D.
8.(2分)当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是( )
A. B. C. D.
9.(2分)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示( )
A.CnH2n+2 B.CnH2n C.CnH2n﹣2 D.CnHn+3
10.(2分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( )
A.不变 B.增大 C.减小 D.先变大再变小
二、填空题(本大题共8小题,每小题3分,满分24分)
11.(3分)习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700 000用科学记数法表示为 .
12.(3分)方程组的解是 .
13.(3分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为 .
14.(3分)如图,已知点B、E、C、F在同一条直线上,∠A=∠D,要使△ABC∽△
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
DEF,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)
15.(3分)从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是 .
16.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是 .
17.(3分)如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为 .
18.(3分)当a、b满足条件a>b>0时, +=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是 .
三、解答题(本大题共11小题,满分76分)
19.(6分)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.
20.(6分)先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=,b=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.(6分)解不等式组:.
22.(6分)在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:
根据所给信息,解答下列问题:
(1)在频数分布表中,m= ,n= .
成绩
频数
频率
60≤x<70
60
0.30
70≤x<80
m
0.40
80≤x<90
40
n
90≤x≤100
20
0.10
(2)请补全图中的频数分布直方图.
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?
23.(6分)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.(6分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.
(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
25.(8分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
26.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
27.(7分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.
(1)求证:∠B=∠ACD.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)已知点E在AB上,且BC2=AB•BE.
(i)若tan∠ACD=,BC=10,求CE的长;
(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.
28.(8分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数解析式,并求出y的最大值.
29.(9分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017年江苏省苏州市中考数学模拟试卷(2)
参考答案与试题解析
一、选择题(本大题共10小题,每小题2分,满分20分,每小题给出的四个选项中,只有一项是符合题目要求的.)
1.(2分)2017的相反数是( )
A.2017 B.﹣2017 C. D.﹣
【解答】解:2017的相反数是﹣2017,
故选:B.
2.(2分)下列运算正确的是( )
A.a2•a3=a6 B.5a﹣2a=3a2 C.(a3)4=a12 D.(x+y)2=x2+y2
【解答】解:A、a2•a3=a5,故此选项错误;
B、5a﹣2a=3a,故此选项错误;
C、(a3)4=a12,正确;
D、(x+y)2=x2+y2+2xy,故此选项错误;
故选:C.
3.(2分)下列几何体中,主视图和俯视图都为矩形的是( )
A. B. C. D.
【解答】解:A、圆锥的主视图是三角形,俯视图是带圆心的圆,故本选项错误;
B、圆柱的主视图是矩形、俯视图是矩形,故本选项正确;
C、球的主视图、俯视图都是圆,故本选项错误;
D、三棱柱的主视图为矩形和俯视图为三角形,故本选项错误.
故选:B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
4.(2分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<5 B.k>5 C.k≤5,且k≠1 D.k<5,且k≠1
【解答】解:根据题意得k﹣1≠0且△=42﹣4(k﹣1)×1>0,
解得:k<5,且k≠1.
故选D.
5.(2分)11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )
A.平均数 B.中位数 C.众数 D.方差
【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数.
故选:B.
6.(2分)下列命题中,错误的是( )
A.两组对边分别平行的四边形是平行四边形
B.有一个角是直角的平行四边形是矩形
C.有一组邻边相等的平行四边形是菱形
D.内错角相等
【解答】解:A、两组对边分别平行的四边形是平行四边形,正确.
B、有一个角是直角的平行四边形是矩形,正确.
C、有一组邻边相等的平行四边形是菱形,正确.
D、内错角相等,错误,缺少条件两直线平行,内错角相等.
故选D.
7.(2分)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.π B.π C. D.
【解答】解:∵PA、PB是⊙O的切线,
∴∠OBP=∠OAP=90°,
在四边形APBO中,∠P=60°,
∴∠AOB=120°,
∵OA=2,
∴的长l==π,
故选C
8.(2分)当k>0时,反比例函数y=和一次函数y=kx+2的图象大致是( )
A. B. C. D.
【解答】解:∵k>0,
∴反比例函数y=经过一三象限,一次函数y=kx+2经过一二三象限.
故选C.
9.(2分)“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示( )
A.CnH2n+2 B.CnH2n C.CnH2n﹣2 D.CnHn+3
【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为an,
观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,
∴an=2n+2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴碳原子的数目为n(n为正整数)时,它的化学式为CnH2n+2.
故选A.
10.(2分)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值( )
A.不变 B.增大 C.减小 D.先变大再变小
【解答】解:∵BE⊥AD于E,CF⊥AD于F,
∴CF∥BE,
∴∠DCF=∠DBE,设∠DCF=∠DBE=α,
∴CF=DC•cosα,BE=DB•cosα,
∴BE+CF=(DB+DC)cosα=BC•cosα,
∵∠ABC=90°,
∴O<α<90°,
当点D从B→D运动时,α是逐渐增大的,
∴cosα的值是逐渐减小的,
∴BE+CF=BC•cosα的值是逐渐减小的.
故选C.
面积法:S△ABC=•AD•CF+•AD•BE=•AD(CF+BE),
∴CF+BE=,
∵点D沿BC自B向C运动时,AD是增加的,
∴CF+BE的值是逐渐减小.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二、填空题(本大题共8小题,每小题3分,满分24分)
11.(3分)习近平总书记提出了未来5年“精准扶贫”的战略构想,意味着每年要减贫约11700000人,将数据11700 000用科学记数法表示为 1.17×107 .
【解答】解:11 700 000=1.17×107,
故答案为:1.17×107.
12.(3分)方程组的解是 .
【解答】解:,
①+②得:
3x=9,
x=3,
把x=3代入①得:y=2,
∴,
故答案为:.
13.(3分)若将点A(1,3)向左平移2个单位,再向下平移4个单位得到点B,则点B的坐标为 (﹣1,﹣1) .
【解答】解:点B的横坐标为1﹣2=﹣1,纵坐标为3﹣4=﹣1,
所以点B的坐标是(﹣1,﹣1),
故答案为(﹣1,﹣1).
14.(3分)如图,已知点B、E、C、F在同一条直线上,∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是 ∠B=∠DEC .(只需写一个条件,不添加辅助线和字母)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:当∠B=∠DEC时,
∵∠A=∠D,∠B=∠DEC,
∴△ABC∽△DEF.
故答案为:∠B=∠DEC.
15.(3分)从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是 .
【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,
∴取到的图形既是中心对称图形又是轴对称图形的概率为,
故答案为:.
16.(3分)如图,直线AB∥CD,AE平分∠CAB.AE与CD相交于点E,∠ACD=40°,则∠BAE的度数是 70° .
【解答】解:∵AB∥CD,
∴∠ACD+∠BAC=180°,
∵∠ACD=40°,
∴∠BAC=180°﹣40°=140°,
∵AE平分∠CAB,
∴∠BAE=∠BAC=×140°=70°,
故答案为:70°.
17.(3分)如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为 13 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:∵将△ABC沿直线DE折叠后,使得点A与点C重合,
∴AD=CD,
∵AB=7,BC=6,
∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.
故答案为:13
18.(3分)当a、b满足条件a>b>0时, +=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是 3<m<8 .
【解答】解:∵+=1表示焦点在x轴上的椭圆,a>b>0,
∵+=1表示焦点在x轴上的椭圆,
∴,
解得3<m<8,
∴m的取值范围是3<m<8,
故答案为:3<m<8.
三、解答题(本大题共11小题,满分76分)
19.(6分)计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.
【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°
=1+﹣1+2﹣
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
=2.
20.(6分)先化简,再求值:(a﹣b)2+b(3a﹣b)﹣a2,其中a=,b=.
【解答】解:(a﹣b)2+b(3a﹣b)﹣a2
=a2﹣2ab+b2+3ab﹣b2﹣a2
=ab,
当a=,b= 时,原式=×=2.
21.(6分)解不等式组:.
【解答】解:解不等式5x+2≥3(x﹣1),得:x≥﹣,
解不等式1﹣>x﹣2,得:x<,
故不等式组的解集为:﹣≤x<.
22.(6分)在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:
根据所给信息,解答下列问题:
(1)在频数分布表中,m= 80 ,n= 0.2 .
成绩
频数
频率
60≤x<70
60
0.30
70≤x<80
m
0.40
80≤x<90
40
n
90≤x≤100
20
0.10
(2)请补全图中的频数分布直方图.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?
【解答】解:(1)根据题意得:
m=200×0.40=80(人),
n=40÷200=0.20;
故答案为:80,0.20;
(2)根据(1)可得:70≤x<80的人数有80人,补图如下:
(3)根据题意得:
4000×(0.20+0.10)=1200(人).
答:估计约有1200人进入决赛.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.(6分)芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)
【解答】解:设DH=x米,
∵∠CDH=60°,∠H=90°,
∴CH=DH•tan60°=x,
∴BH=BC+CH=2+x,
∵∠A=30°,
∴AH=BH=2+3x,
∵AH=AD+DH,
∴2+3x=20+x,
解得:x=10﹣,
∴BH=2+(10﹣)=10﹣1≈16.3(米).
答:立柱BH的长约为16.3米.
24.(6分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.
(1)求乙骑自行车的速度;
(2)当甲到达学校时,乙同学离学校还有多远?
【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,
根据题意得+=﹣2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解得:x=300米/分钟,
经检验x=300是方程的根,
答:乙骑自行车的速度为300米/分钟;
(2)∵300×2=600米,
答:当甲到达学校时,乙同学离学校还有600米.
25.(8分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
【解答】(1)证明:∵在▱ABCD中,AB=CD,
∴BC=AD,∠ABC=∠CDA.
又∵BE=EC=BC,AF=DF=AD,
∴BE=DF.
∴△ABE≌△CDF.
(2)解:∵四边形AECF为菱形,
∴AE=EC.
又∵点E是边BC的中点,
∴BE=EC,即BE=AE.
又BC=2AB=4,
∴AB=BC=BE,
∴AB=BE=AE,即△ABE为等边三角形,
▱ABCD的BC边上的高为2×sin60°=,
∴菱形AECF的面积为2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
【解答】解:(1)把A(2,﹣1)代入反比例解析式得:﹣1=,即m=﹣2,
∴反比例解析式为y=﹣,
把B(,n)代入反比例解析式得:n=﹣4,即B(,﹣4),
把A与B坐标代入y=kx+b中得:,
解得:k=2,b=﹣5,
则一次函数解析式为y=2x﹣5;
(2)∵A(2,﹣1),B(,﹣4),直线AB解析式为y=2x﹣5,
∵C(0,2),直线BC解析式为y=﹣12x+2,
将y=﹣1代入BC的解析式得x=,则AD=2﹣=.
∵xC﹣xB=2﹣(﹣4)=6,
∴S△ABC=×AD×(yC﹣yB)=××6=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
27.(7分)如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.
(1)求证:∠B=∠ACD.
(2)已知点E在AB上,且BC2=AB•BE.
(i)若tan∠ACD=,BC=10,求CE的长;
(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.
【解答】解:(1)∵∠ACB=∠DCO=90°,
∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,
即∠ACD=∠OCB,
又∵点O是AB的中点,
∴OC=OB,
∴∠OCB=∠B,
∴∠ACD=∠B,
(2)(i)∵BC2=AB•BE,
∴=,
∵∠B=∠B,
∴△ABC∽△CBE,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠ACB=∠CEB=90°,
∵∠ACD=∠B,
∴tan∠ACD=tan∠B=,
设BE=4x,CE=3x,
由勾股定理可知:BE2+CE2=BC2,
∴(4x)2+(3x)2=100,
∴解得x=2,
∴CE=6;
(ii)过点A作AF⊥CD于点F,
∵∠CEB=90°,
∴∠B+∠ECB=90°,
∵∠ACE+∠ECB=90°,
∴∠B=∠ACE,
∵∠ACD=∠B,
∴∠ACD=∠ACE,
∴CA平分∠DCE,
∵AF⊥CE,AE⊥CE,
∴AF=AE,
∴直线CD与⊙A相切.
28.(8分)如图,BD是正方形ABCD的对角线,BC=2,边BC在其所在的直线上平移,将通过平移得到的线段记为PQ,连接PA、QD,并过点Q作QO⊥BD,垂足为O,连接OA、OP.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)请直接写出线段BC在平移过程中,四边形APQD是什么四边形;
(2)请判断OA、OP之间的数量关系和位置关系,并加以证明;
(3)在平移变换过程中,设y=S△OPB,BP=x(0≤x≤2),求y与x之间的函数解析式,并求出y的最大值.
【解答】解:(1)四边形APQD为平行四边形;
(2)OA=OP,OA⊥OP,理由如下:
∵四边形ABCD是正方形,
∴AB=BC=PQ,∠ABO=∠OBQ=45°,
∵OQ⊥BD,
∴∠PQO=45°,
∴∠ABO=∠OBQ=∠PQO=45°,
∴OB=OQ,
在△AOB和△OPQ中,,
∴△AOB≌△POQ(SAS),
∴OA=OP,∠AOB=∠POQ,
∴∠AOP=∠BOQ=90°,
∴OA⊥OP;
(3)如图,过O作OE⊥BC于E.
①如图1,当P点在B点右侧时,
则BQ=x+2,OE=,
∴y=וx,即y=(x+1)2﹣,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
又∵0≤x≤2,
∴当x=2时,y有最大值为2;
②如图2,当P点在B点左侧时,
则BQ=2﹣x,OE=,
∴y=וx,即y=﹣(x﹣1)2+,
又∵0≤x≤2,
∴当x=1时,y有最大值为;
综上所述,当x=2时,y有最大值为2.
29.(9分)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)依题意得:,
解之得:,
∴抛物线解析式为y=﹣x2﹣2x+3
∵对称轴为x=﹣1,且抛物线经过A(1,0),
∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,
得,
解之得:,
∴直线y=mx+n的解析式为y=x+3;
(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.
把x=﹣1代入直线y=x+3得,y=2,
∴M(﹣1,2),
即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);
(3)设P(﹣1,t),
又∵B(﹣3,0),C(0,3),
∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,
①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;
②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,
③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10=18解之得:t1=,t2=;
综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,) 或(﹣1,).
由莲山课件提供http://www.5ykj.com/ 资源全部免费