由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年西藏兰州市城关区青白石中学二模试卷
一.选择题(共12小题,满分27分)
1.|﹣2|的倒数是( )
A.2 B.﹣ C.﹣2 D.
2.根据安徽省统计局最新统计,2017年11月份,全省财政收入315.1亿元,增长5.4%,315.1亿用科学记数法表示正确的是( )
A.315.1×108 B.31.51×109 C.3.151×1010 D.0.3151×1011
3.(3分)下列计算正确的是( )
A.a•a2=a3 B.(a3)2=a5 C.a+a2=a3 D.a6÷a2=a3
4.下列图形中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.
5.(3分)如图,在▱ABCD中,BD为对角线,E、F分别是AD、BD的中点,连接EF.若EF=3,则CD的长为( )
A.3 B.6 C.8 D.12
6.(3分)有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小明参与游戏,如果只随机抽取一张,那么小明抽到好人牌的概率是( )
A. B. C. D.
7.(3分)要使有意义,x的取值范围是( )
A.x≥5 B.x≤5 C.x>5 D.x<5
8.(3分)小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.16cm B.17cm C.22cm或23cm D.11cm
9.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是( )
A. B. C. D.
10.(3分)如图,△ABC中,AB=BC,∠ABC=120°,AC=2,⊙O是△ABC的外接圆,D是优弧AmC上任意一点(不包括A,C),记四边形ABCD的周长为y,BD的长为x,则y关于x的函数关系式是( )
A.y=x+4 B.y=x+4 C.y=x2+4 D.y=x2+4
11.(3分)如图,点A为函数y=(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果△AOB的面积为2,那么k的值为( )
A.1 B.2 C.3 D.4
12.(3分)函数y=ax﹣a与y=(a≠0)在同一直角坐标系中的图象可能是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.
二.填空题(共6小题,满分18分,每小题3分)
13.(3分)分解因式(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)= .
14.(3分)如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个△A1B1C1的顶点A1与点P重合,第二个△A2B2C2的顶点A2是B1C1与PQ的交点,…,最后一个△AnBnCn的顶点Bn、Cn在圆上.如图1,当n=1时,正三角形的边长a1= ;如图2,当n=2时,正三角形的边长a2= ;如图3,正三角形的边长an= (用含n的代数式表示).
15.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是 cm2(结果保留π).
16.(3分)已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数是 %.按此年平均增长率,预计第4年该工厂的年产量应为 万台.
17.(3分)如图,点D、E分别在△ABC的边AC和BC上,∠C=90°,DE∥AB,且3DE=2AB,AE=13,BD=9,那么AB的长为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.(3分)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是 .
三.解答题(共7小题,满分46分)
19.(5分)计算:(﹣2)0++4cos30°﹣|﹣|.
20.(5分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
求的值.
21.(6分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.
22.(6分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF,
(1)求证:AE=CF;
(2)若AB=3,∠AOD=120°,求矩形ABCD的面积.
23.(8分)典典同学学完统计知识后,随机调查了她家所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
请根据以上不完整的统计图提供的信息,解答下列问题:
(1)扇形统计图中a= ,b= ;并补全条形统计图;
(2)若该辖区共有居民3500人,请估计年龄在0~14岁的居民的人数.
(3)一天,典典知道了辖区内60岁以上的部分老人参加了市级门球比赛,比赛的老人们分成甲、乙两组,典典很想知道甲乙两组的比赛结果,王大爷告诉说,甲组与乙组的得分和为110,甲组得分不低于乙组得分的1.5倍,甲组得分最少为多少?
24.(6分)如图,在△ABC中,∠C=90°,∠ACB的平分线交AB于点O,以O为圆心的⊙O与AC相切于点D.
(1)求证:⊙O与BC相切;
(2)当AC=3,BC=6时,求⊙O的半径.
25.(10分)如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
信息读取
(1)梯形上底的长AB= ;
(2)直角梯形ABCD的面积= ;
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4)当2<t<4时,求S关于t的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年西藏兰州市城关区青白石中学二模试卷
参考答案与试题解析
一.选择题(共12小题,满分27分)
1.
【解答】解:∵|﹣2|=2,
∴|﹣2|的倒数是:.
故选:D.
2.
【解答】解:315.1亿用科学记数法表示正确的是3.151×1010.
故选:C.
3.
【解答】解:A、a•a2=a3,正确;
B、应为(a3)2=a3×2=a6,故本选项错误;
C、a与a2不是同类项,不能合并,故本选项错误
D、应为a6÷a2=a6﹣2=a4,故本选项错误.
故选:A.
4.
【解答】解:A、是中心对称图形,不是轴对称图形.故错误;
B、既是轴对称图形,又是中心对称图形.故正确;
C、是轴对称图形,不是中心对称图形.故错误;
D、是轴对称图形,不是中心对称图形.故错误.
故选:B.
5.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:∵四边形ABCD是平行四边形,
∴AB=CD;
又∵E、F分别是AD、BD的中点,
∴EF是△DAB的中位线,
∴EF=AB,
∴EF=CD=3,
∴CD=6;
故选:B.
6.
【解答】解:从9张牌中抽取1张共有9种等可能结果,其中抽到好人牌的有6种可能,
∴小明抽到好人牌的概率是=,
故选:D.
7.
【解答】解:由题意得:x﹣5≥0,
解得:x≥5,
故选:A.
8.
【解答】解:根据等腰三角形的概念知,有两边相等,因而可以是两条边长为7或两条边长为8.当两条边长为7时,周长=7×2+8=22cm;当两条边长为8时,周长=8×2+7=23cm.
故选:C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9.
【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.
故选:A.
10.
【解答】解:连接OB交AC于E,连接OC、OB,
过B作BG⊥AD,BF⊥CD,交DA的延长线于G,交CD于F,
∵AB=BC,
∴=,
∴∠BDA=∠BDC,
∴BG=BF,
在Rt△AGB和Rt△CFB中,
∵,
∴Rt△AGB≌Rt△CFB(HL),
∴AG=FC,
∵=,
∴OB⊥AC,EC=AC=×=,
在△AOB和△COB中,
∵,
∴△AOB≌△COB(SSS),
∴∠ABO=∠OBC=∠ABC=×120°=60°,
∵OB=OC,
∴△OBC是等边三角形,
∴∠BOC=60°,
∴∠BDC=∠ADB=30°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
Rt△BDF中,BD=x,
∴DF=x,
同理得:DG=x,
∴AD+DC=AD+DF+FC=DG+DF=x+x=x,
Rt△BEC中,∠BCA=30°,
∴BE=1,BC=2,
∴AB=BC=2,
∴y=AB+BC+AD+DC=2+2+x=x+4,
故选:B.
11.
【解答】解:根据题意可知:S△AOB=|k|=2,
又反比例函数的图象位于第一象限,k>0,
则k=4.
故选:D.
12.
【解答】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;
B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;
C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.
故选:D.
二.填空题(共6小题,满分18分,每小题3分)
13.
【解答】解:令x+y=a,xy=b,
则(xy﹣1)2﹣(x+y﹣2xy)(2﹣x﹣y)
=(b﹣1)2﹣(a﹣2b)(2﹣a)
=b2﹣2b+1+a2﹣2a﹣2ab+4b
=(a2﹣2ab+b2)+2b﹣2a+1
=(b﹣a)2+2(b﹣a)+1
=(b﹣a+1)2;
即原式=(xy﹣x﹣y+1)2=[x(y﹣1)﹣(y﹣1)]2=[(y﹣1)(x﹣1)]2=(y﹣1)2(x﹣1)2.
故答案为:(y﹣1)2(x﹣1)2.
14.
【解答】解:(1)设PQ与B1C1交于点D,连接OB1,则OD=A1D﹣OA1=a1﹣1,
在Rt△OB1D中,OB12=B1D2+OD2,
即12=(a1)2+(a1﹣1)2,
解得,a1=;
(2)设PQ与B2C2交于点E,连接OB2,则OE=2A1A2﹣OA1=a2﹣1,
在Rt△OB2E中,OB22=B2E2+OE2,
即12=(a2)2+(a2﹣1)2,
解得,a2=;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)设PQ与BnCn交于点F,连接OBn,则OF=nan﹣1,
在Rt△OBnF中,OBn2=BnF2+OF2,
即12=(an)2+(nan﹣1)2,
解得,an=.
故答案为:, ,.
15.
【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.
16.
【解答】解:设年平均增长率为x,依题意列得100(1+x)2=121
解方程得x1=0.1=10%,x2=﹣2.1(舍去)
所以第4年该工厂的年产量应为121(1+10%)2=146.41万台.
故答案为:10,146.41
17.
【解答】解:设DE=2x,CD=2y,CE=2z,
∵DE∥AB,3DE=2AB,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AB=3x,AC=3y,BC=3z,
又∵∠C=90°,
∴(2y)2+(2z)2=(2x)2,
即y2+z2=x2,①
同理(3y)2+(2z)2=132,②
(2y)2+(3z)2=92,③
②﹣①×4,得
5y2=169﹣4x2,④
①×9﹣③,得
5y2=9x2﹣81,⑤
⑤﹣④,得
x2=,
x=,
∴AB=3x=.
故答案为:.
18.
【解答】解:
3=2+1;
5=3+2;
8=5+3;
13=8+5;
…
可以发现:从第三个数起,每一个数都等于它前面两个数的和.
则第8个数为13+8=21;
第9个数为21+13=34;
第10个数为34+21=55.
故答案为55.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三.解答题(共7小题,满分46分)
19.
【解答】解:原式=1+3+4×﹣
=4+2﹣2
=4.
20.
【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.
∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,
∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,
∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,
∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.
∵x,y,z均为实数,
∴x=y=z.
∴==1.
21.
【解答】解:由题意得:BE=,AE=,
∵AE﹣BE=AB=m米,
∴﹣=m(米),
∴CE=(米),
∵DE=n米,
∴CD=+n(米).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴该建筑物的高度为:(+n)米.
22.
【解答】(1)证明:∵四边形ABCD是矩形,
∴OA=OC,OB=OD,AC=BD,∠ABC=90°,
∵BE=DF,
∴OE=OF,
在△AOE和△COF中,,
∴△AOE≌△COF(SAS),
∴AE=CF;
(2)解:∵OA=OC,OB=OD,AC=BD,
∴OA=OB,
∵∠AOB=∠COD=60°,
∴△AOB是等边三角形,
∴OA=AB=3,
∴AC=2OA=6,
在Rt△ABC中,BC=,
∴矩形ABCD的面积=AB•BC=3×3=9.
23.
【解答】解:(1)总人数:230÷46%=500(人),
100÷500×100%=20%,
60÷500×100%=12%;
500×22%=110(人),
如图所示:
(2)3500×20%=700(人);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)设甲组得x分,则乙组得(110﹣x)分,由题意得:
x≥1.5(110﹣x),
解得:x≥66.
答:甲组最少得66分.
24.
【解答】证明:(1)过点O作OF⊥BC,垂足为F,连接OD,
∵AC是圆的切线,
∴OD⊥AC,
又∵OC为∠ACB的平分线,
∴OF=OD,即OF是⊙O的半径,
∴BC与⊙0相切;
(2)S△ABC=S△AOC+S△BOC,即AC×BC=AC×OD+BC×OF,
∵OF=OD=r,
∴r(AC+BC)=18,
解得:r=2.
即⊙O的半径为2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.
【解答】解:由题意得:
(1)AB=2.
(2)S梯形ABCD=12.
(3)当平移距离BE大于等于4时,直角梯形ABCD被直线l扫过的面积恒为12.
(4)当2<t<4时,如图所示,
直角梯形ABCD被直线l扫过的面积S=S直角梯形ABCD﹣SRt△DOF
=12﹣(4﹣t)×2(4﹣t)=﹣t2+8t﹣4.
(5)①当0<t<2时,有4t:(12﹣4t)=1:3,解得t=.
②当2<t<4时,有(﹣t2+8t﹣4):[12﹣(﹣t2+8t﹣4)]=3:1,
即t2﹣8t+13=0,
解得t=4﹣,t=4+ (舍去).
答:当t= 或t=4﹣时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费