由莲山课件提供http://www.5ykj.com/ 资源全部免费
T
M
株洲市2018年初中毕业学业考试
数 学 试 题 样卷
时量:120分钟 满分:120分
注意事项:
1.答题前,请按要求在答题卡上填写好自己的姓名和准考证号.
2.答题时,切记答案要填在答题卡上,答在试题卷上的答案无效.
3.考试结束后,请将试题卷和答题卡都交给监考老师.
一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)
1.计算的结果是
A. B. C. D.
2.如图,数轴上点所表示的数的绝对值是
A. B. C. D.以上都不对
第2题图
3.如图,直线、被直线所截,且∥,则的度数是
A. B. C. D.
4.已知实数满足,则下列选项可能错误的是
A. B. C. D.
5.如图,在中,,,,则的度数是
A. B. C. D.
第3题图
第5题图
6.下列圆的内接正多边形中,一条边所对的圆心角最大的图形是
A.正三角形 B.正方形 C.正五边形 D.正六边形
7.株洲市展览馆某天四个时间段的进出馆人数统计如下表,则馆内人数变化最大的时间段是
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
9:00—10:00
10:00—11:00
14:00—15:00
15:00—16:00
进馆人数
50
24
55
32
出馆人数
30
65
28
45
A.9:00—10:00 B.10:00—11:00 C.14:00—15:00 D.15:00—16:00
8.三名初三学生坐在仅有的三个座位上,起身后重新就座,恰好有两名同学没有坐回原座位的概率是
A. B. C. D.
9.如图, 点分别为四边形四条边的中点,则关于四边形,下列说法正确的是
A.一定不是平行四边形 B.一定不是中心对称图形
第9题图
第10题图
C.可能是轴对称图形 D.当时,它为矩形
10.如图,若内一点满足,则点为的布洛卡点.
三角形的布洛卡点()由法国数学家和数学教育家克洛尔(,)于年首次发现,但他的发现并未被当时的人们所注意.年,布洛卡点被一个数学爱好者法国军官布洛卡(,)重新发现,并用他的名字命名.问题:已知在等腰直角三角形中,,若为的布洛卡点,,则的值为
A. B. C. D.
第11题图
二、填空题(本题共8小题,每小题3分,共24分)
11.如图,在中,的度数是 度.
12.因式分解: .
13.分式方程的解是 .
14.的3倍大于5,且的一半与1的差小于或等于2,
则的取值范围是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
15.如图,已知是的直径,直线经过点,且,,线段和分别交于点、,,则= 度.
第15题图
第16题图
16.如图,直线与轴、轴分别交于点、,当直线绕点按顺时针方向旋转到与轴首次重合时,点运动的路径的长度是 .
17.如图,一块、、的直角三角板,直角顶点位于坐标原点,斜边垂直轴,顶点在函数的图象上,顶点在函数的图象上,,则 .
第17题图
第18题图
18.如图,二次函数的对称轴在轴的右侧,其图象与轴交于点、点,且与轴交于点.小强得到以下结论:
①;②;③;④当时,.
以上结论中,正确结论的序号是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(本大题共8小题,共66分)
19.(本题满分6分)计算:.
20.(本题满分6分)先化简,再求值:,其中,.
21.(本题满分8分)某次世界魔方大赛吸引世界各地共600名魔方爱好者参加.本次大赛首轮进行3×3阶魔方赛,组委会随机地将爱好者平均分到20个区域,每个区域30名同时进行比赛,完成时间小于8秒的爱好者进入下一轮角逐.下图是3×3阶魔方赛A区域30名爱好者完成时间统计图.求:
(1)A区域3×3阶魔方赛爱好者进入下一轮角逐的人数的比例(结果用最简分数表示);
(2)若3×3阶魔方赛各个区域的情况大体一致,则根据A区域的统计结果估计在3×3阶魔方赛后本次大赛进入下一轮角逐的人数;
人数(名)
完成时间(秒)
3×3阶魔方赛A区域爱好者完成时间条形图
6 7 8 9 10
10
3
1
(3)若3×3阶魔方赛A区域爱好者完成时间的平均值为8.8秒,求该项目赛该区域完成时间为8秒的爱好者的频率(结果用最简分数表示).
第22题图
22.(本题满分8分)如图,正方形的顶点在等腰直角三角形的斜边上,与交于点,连接.
(1)求证:≌;
(2)求证:∽.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.(本题满分8分)如图,一架水平飞行的无人机的尾端点测得正前方的桥的左端点的俯角为,其中,无人机的飞行高度为米,桥的长度为米.
(1)求点到桥左端点的距离;
(2)若无人机前端点测得正前方的桥的右端点的俯角为,求这架无人机的长度.
第23题图
24.(本题满分8分)如图,的直角顶点在函数的图象上,顶点在函数的图象上,轴,连接,记的面积为,的面积为,设.
(1)求的值及关于的表达式;
(2)若用和表示函数的最大值和最小值,令,其中为实数,求.
P
O
A
B
第24题图
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.(本题满分10分)如图,为⊙的一条弦,点是劣弧的中点,是优弧上一点,点在的延长线上,且,线段交弦于点.
(1)求证:;
(2)若线段的长为,且,求的面积.
第25题图
A
B
C
E
F
O
D
(注:根据圆的对称性可知)
26.(本题满分12分)已知二次函数.
(1)当时,求这个二次函数的对称轴的方程;
(2)若,问:为何值时,二次函数的图象与轴相切?
(3)若二次函数的图象与轴交于点、,且,与轴的正半轴交于点.以为直径的半圆恰好过点.二次函数的对称轴与轴、直线、直线分别交于点、,且满足.求二次函数的表达式.
第26题图
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
株洲市2018年初中毕业学业考试数学试题样卷
参考答案及评分标准
一、选择题:(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分)
题 次
1
2
3
4
5
6
7
8
9
10
答 案
C
A
B
D
B
A
B
D
C
D
二、填空题:(本题共8小题,每小题3分,共24分)
11. 12. 13. 14.≤6
15.80 16. 17. 18.①④
三、解答题(本大题共8小题,共66分)
19.(本题满分6分)
解:原式= ----------------------------------------------------------------5分
---------------------------------------------------------------------------------6分
(其中:----1分 ----1分 ----1分)
20.(本题满分6分)
解:原式=---------------------------------------1分
---------------------------------2分
--------------------------------------------------3分
-----------------------------------------------------------4分
将,代入上式得,原式=-------------------------6分
21. (本题满分8分)
解:(1)A区域进入下一轮角逐的人数为4人,所以A区域进入下一轮角逐的人数的比例为----------------------------------------------------------------------------------------2分
(2)由可知:本次大赛进入下一轮角逐的人数约为人----------5分
(3)依题意可知,-----------------------6分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
可得:, 解得---------------------------------------------------------7分
所以,该项目赛该区域完成时间为8秒的爱好者的频率为-----------------------8分
22. (本题满分8分)
证明:(1)等腰直角三角形中, --------------1分
正方形中, ---------------------------------------2分
,
----------------------------------------------------3分
在与中,
,,,
≌---------------------------------------------------4分
(2)由题意可知,,-------5分
由≌有----------------6分
又有-------------------------------7分
∽---------------------------------------------------8分
23.(本题满分8分)
解:(1)依题意可知,,
在中,,,,
所以,--------------------------------------------------------------------3分
所以(米)
所以点到桥左端点的距离米--------------------------------------------4分
(2)方法一:作于点,
由题意可知,在中,
,所以,---------------------------------6分
所以,(米) -------------7分
所以,这架无人机的长度为5米--------------------------------------------------------8分
方法二:延长、交于点, 由题意可知,,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
在中,,设,则,
由(1)知,且,---------------6分
在中,即
解得-------------------------------------------------------------------------------------7分
所以,这架无人机的长度为5米---------------------------------------------------------8分
P
O
A
B
24.(本题满分8分)
解:(1)依题意可知,点的坐标为
将代入可得的值为12---------2分
由题意可知,点的横坐标为,点的纵坐标为
设点的坐标为,点的纵坐标为
将代入可得:
将代入可得:,即
,-----------------4分
--------------5分
(2)由题(1)可得:
当时,----------------------------------------------------------------7分
,有,当时,.
---------------------------------------------------------------------------------8分
25.(本题满分10分)
(1)证明:点是劣弧的中点
A
B
C
E
F
O
D
H
-----------------1分
----------3分
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
------------------------------------------4分
(2)解:由(1)知
,
----------------------------------5分
因为,则,且由题可知
由(1)知
∽-----------------------------------------------------------------------------6分
,即
-------------------------------------------------------------------------------------7分
设与相交于点
由圆的对称性可知,
------------------------------------8分
在中,---------------------------9分
又
的面积为---------------------------------------------------------------------------10分
26.(本题满分12分)
解:(1)将代入表达式得
对称轴的方程为-------------------------------------------------------------3分
(2)将代入表达式得
二次函数的图象与轴相切,---------------------------------------------------5分
即
解得----------------------------------------------------------------------------------------7分
(3)抛物线与轴交于点
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
令解得
为
抛物线与轴交于两点,且
,, ①
点在以为直径的圆上,
∽----------------------------8分
,即
②
O
由①②可知
解得--------------------------9分
过点作于
,
, ∽
,,∥
圆心为直径的中点,
,
,
----------------------------------10分
③
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
④
将③代入④式得,或(舍)
又,--------------------------------11分
抛物线的解析式为--------------------------12分
由莲山课件提供http://www.5ykj.com/ 资源全部免费