由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年 九年级数学 中考模拟试卷
一、选择题:
-0.5的绝对值是( )
A.0.5 B.-0.5 C.2 D.﹣2
已知a,b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果是( )
A.2a B.﹣2a C.0 D.2b
下列计算正确的是( )
A.x3•x2=2x6 B.x4•x2=x8 C.(﹣x2)3=﹣x6 D.(x3)2=﹣x5
桂林是世界著名的风景旅游城市和历史文化名城,地处南岭山系西南部,广西东北部,行政区域总面积27 809平方公里.将27 809用科学记数法表示应为( )
A.0.278 09×105 B.27.809×103 C.2.780 9×103 D.2.780 9×104
某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果,下面的调查数据中,他最关注的是( )
A.中位数 B.平均数 C.加权平均数 D.众数
下列约分正确的是( )
A. B. C. D.
图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )
A.① B.② C.③ D.④
一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( )
下列计算正确的是( )
A. B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角( )
A.2个 B.3个 C.4个 D.5个
一个等腰三角形的两边长分别是3和7,则它的周长为( )
A.17 B.15 C.13 D.13或17
已知关于x方程x2﹣4x+m=0,如果从1、2、3、4、5、6中任选一个数作为方程常数项m,那么所得方程有实数根的概率是( )
A. B. C. D.
如图,在⊙O中,若C是弧BD的中点,则图中与∠BAC相等的角有( )
A.1个 B.2 个 C.3个 D.4个
如图,在矩形ABCD中,AD=3,AB>3,AG平分∠BAD,分别过点B、C作BE⊥AG于点E,CF⊥AG于点F,则(AE﹣GF)的值为( )
A.3 B. C. D.
二、填空题:
因式分解:x2﹣49= .
要使的值相等,则x=__________。
在⊙O中,直径AB=8,∠ABC=30°,点H在弦BC上,弦PQ⊥OH于点H.当点P在上移动时,PQ长的最大值为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,…依次作下去,图中所作的第n个四边形的周长为 .
三、解答题:
(﹣)2÷(﹣)4×(﹣1)6﹣()×48.
解不等式组:
在元旦前夕,某超市购进甲、乙两种玩具后,按进价提高50%标价(就是价格牌上标出的价格),两种玩具标价之和为450元,某超市搞促销,甲、乙两种玩具分别按标价的8折和8.5折出售,某顾客购买甲、乙两种玩具共付款375元,问这两种玩具的进价各是多少元?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
随着人类的进步,人们越来越关注周围环境的变化,社会也积极呼吁大家都为环境尽份力.小明积极学习与宣传,并从四个方面:
A﹣空气污染,B﹣淡水资源危机,C﹣土地荒漠化,D﹣全球变暖.
对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项),以下是他收集数据后,绘制的不完整的统计图表和统计图:
根据表中提供的信息解答以下问题:
(1)求出表中字母a、b的值,并将条形统计图补充完整;
(2)如果小明所在的学校有4000名学生,那么根据小明提供的信息估计该校关注“全球变暖”的学生大约有多少人?
钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A.B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)如图1,将直角的顶点E放在正方形ABCD的对角线AC上,使角的一边交CD于点F,另一边交CB或其延长线于点G,求证:EF=EG;
(2)如图2,将(1)中的“正方形ABCD”改成“矩形ABCD”,其他条件不变.若AB=m,BC=n,试求EF:EG的值;(3分)
(3)如图3,将直角顶点E放在矩形ABCD的对角线交点,EF、EG分别交CD与CB于点F、G,且EC平分∠FEG.若AB=2,BC=4,求EG、EF 的长.
已知函数y1=x,y2=x2+bx+c,ɑ,β为方程y1-y2=0的两个根,点M(t,T)在函数y2的图象上.
(1)若,求函数y2的解析式;
(2)在(1)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为1/12时,求t的值;
(3)若0