由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年黑龙江省大庆市中考数学一模试卷
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)﹣的相反数是( )
A.5 B. C.﹣ D.﹣5
2.(3分)点P(﹣1,2)关于x轴对称的点的坐标是( )
A.(﹣1,2) B.(﹣2,1) C.(﹣1,﹣2) D.(1,2)
3.(3分)下列运算正确的是( )
A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
4.(3分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )
A.平均数 B.中位数 C.众数 D.方差
5.(3分)下列说法正确的是( )
A.对角线相等且相互垂直的四边形是菱形
B.四条边相等的四边形是正方形
C.对角线相互垂直的四边形是平行四边形
D.对角线相等且相互平分的四边形是矩形
6.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为( )
A.186×108吨 B.18.6×109吨 C.1.86×1010吨 D.0.186×1011吨
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于( )
A.30° B.40° C.50° D.60°
8.(3分)如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是( )
A.3cm B.4cm C.5cm D.6cm
9.(3分)如果不等式组恰有3个整数解,则a的取值范围是( )
A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣1
10.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且0<a<b,则a、b、m、n的大小关系是( )
A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b
二、填空题(本大题共8小题,每小题3分,共24分)
11.(3分)因式分解2x2﹣4x+2= .
12.(3分)若在实数范围内有意义,则x的取值范围为 .
13.(3分)正三角形的外接圆的半径与内切圆半径的比值为 .
14.(3分)从
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是 .
15.(3分)如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是 .
16.(3分)把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为 .
17.(3分)如图,AB是⊙O的直径,弦CD垂直AB,已知AC=1,BC=2,那么sin∠ACD的值是 .
18.(3分)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为 .
三、解答题(本大题共10小题,共66分)
19.(4分)计算:4cos30°+(1﹣)0﹣+|﹣2|.
20.(4分)化简(+a﹣2)÷.
21.(6分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(6分)在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为 ;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
23.(6分)已知,如图:反比例函数y=的图象经过点A(﹣3,b)过点A作x轴的垂线,垂足为B,S△AOB=3.
(1)求k,b的值;
(2)若一次函数y=ax+1的图象经过点A,且与x轴交于M,求AM的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
24.(7分)如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度是多少?
25.(7分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.
(1)求证:方程总有两个实数根;
(2)若方程有一个根小于1,求k的取值范围.
26.(8分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
27.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
28.(10分)在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.
(1)当m=4时,求n的值;
(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;
(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年黑龙江省大庆市中考数学一模试卷
参考答案与试题解析
一、选择题(本大题共10小题,每小题3分,共30分)
1.(3分)﹣的相反数是( )
A.5 B. C.﹣ D.﹣5
【解答】解:﹣的相反数是,
故选:B.
2.(3分)点P(﹣1,2)关于x轴对称的点的坐标是( )
A.(﹣1,2) B.(﹣2,1) C.(﹣1,﹣2) D.(1,2)
【解答】解:根据轴对称的性质,得点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2),
故选:C.
3.(3分)下列运算正确的是( )
A.x3+x3=2x6 B.x6÷x2=x3 C.(﹣3x3)2=2x6 D.x2•x﹣3=x﹣1
【解答】解:A、应为x3+x3=2x3,故本选项错误;
B、应为x6÷x2=x4,故本选项错误;
C、应为(﹣3x3)2=9x6,故本选项错误;
D、x2•x﹣3=x﹣1,正确.
故选:D.
4.(3分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )
A.平均数 B.中位数 C.众数 D.方差
【解答】
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:A、原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;
B、原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;
C、原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;
D、原来数据的方差==,
添加数字2后的方差==,故方差发生了变化.
故选:D.
5.(3分)下列说法正确的是( )
A.对角线相等且相互垂直的四边形是菱形
B.四条边相等的四边形是正方形
C.对角线相互垂直的四边形是平行四边形
D.对角线相等且相互平分的四边形是矩形
【解答】解:A、对角线互相平分且垂直的四边形是菱形,故错误;
B、四条边相等的四边形是菱形,故错误;
C、对角线相互平分的四边形是平行四边形,故错误;
D、对角线相等且相互平分的四边形是矩形,正确;
故选:D.
6.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨,用科学记数法可表示为( )
A.186×108吨 B.18.6×109吨 C.1.86×1010吨 D.0.186×1011吨
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:186亿吨=1.86×1010吨.
故选:C.
7.(3分)如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则∠2等于( )
A.30° B.40° C.50° D.60°
【解答】解:∵a∥b,∠1=60°,
∴∠3=∠1=60°,
∴∠2=90°﹣∠3=90°﹣60°=30°.
故选:A.
8.(3分)如图,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边中点E处,点C落在点Q处,折痕为FH,则线段AF的长是( )
A.3cm B.4cm C.5cm D.6cm
【解答】解:由折叠可得DF=EF,设AF=x,则EF=8﹣x,
∵AF2+AE2=EF2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴x2+42=(8﹣x)2,
解得x=3.
故选:A.
9.(3分)如果不等式组恰有3个整数解,则a的取值范围是( )
A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣1
【解答】解:如图,
由图象可知:不等式组恰有3个整数解,
需要满足条件:﹣2≤a<﹣1.
故选:C.
10.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且0<a<b,则a、b、m、n的大小关系是( )
A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b
【解答】解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.
函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(0<a<b).
方程1﹣(x﹣a)(x﹣b)=0
转化为(x﹣a)(x﹣b)=1,
方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.
由m<n,可知对称轴左侧交点横坐标为m,右侧为n.
由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
综上所述,可知m<a<b<n.
故选:A.
二、填空题(本大题共8小题,每小题3分,共24分)
11.(3分)因式分解2x2﹣4x+2= 2(x﹣1)2 .
【解答】解:2x2﹣4x+2=2(x2﹣2x+1)=2(x﹣1)2
故答案为2(x﹣1)2.
12.(3分)若在实数范围内有意义,则x的取值范围为 x≥2 .
【解答】解:由题意得:x﹣2≥0,
解得:x≥2,
故答案为:x≥2.
13.(3分)正三角形的外接圆的半径与内切圆半径的比值为 2 .
【解答】解:如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,
由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.
∵AD⊥BC,∠1=∠4=30°,
∴BO=2OD,而OA=OB,
∴OA:OD=2:1.
故答案为:2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14.(3分)从 1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是3的倍数的概率是 .
【解答】解:3的倍数有3,6,9,
则十个数中随机取出一个数,取出的数是3的倍数的概率是.
故答案为:.
15.(3分)如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是 ﹣1≤x≤2 .
【解答】解:根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.
故答案为:﹣1≤x≤2.
16.(3分)把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为 y=﹣2x2﹣4x﹣3 .
【解答】解:∵抛物线y=2x2﹣4x+3=2(x﹣1)2+1的顶点坐标为(1,1),
∴绕原点旋转180°后的抛物线的顶点坐标为(﹣1,﹣1),
∴所得到的图象的解析式为y=﹣2(x+1)2﹣1,即y=﹣2x2﹣4x﹣3.
故答案为:y=﹣2x2﹣4x﹣3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
17.(3分)如图,AB是⊙O的直径,弦CD垂直AB,已知AC=1,BC=2,那么sin∠ACD的值是 .
【解答】解:∵AB是⊙O的直径,弦CD垂直AB,
∴,
∴∠B=∠ACD,
∵AB是⊙O的直径,
∴∠ACB=90°,
∴AB==3,
∴sin∠ACD=sin∠B==,
故答案为:.
18.(3分)在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为 π+ .
【解答】解:∵∠C=90°,AC=BC=1,
∴AB==;
根据题意得:△ABC绕点B顺时针旋转135°,BC落在x轴上;△ABC再绕点C顺时针旋转90°,AC落在x轴上,停止滚动;
∴点A的运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示:
∴点A经过的路线与x轴围成的图形是:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
一个圆心角为135°,半径为的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;
∴点A经过的路线与x轴围成图形的面积
=+×1×1+=π+.
故答案为:π+.
三、解答题(本大题共10小题,共66分)
19.(4分)计算:4cos30°+(1﹣)0﹣+|﹣2|.
【解答】解:原式=4×+1﹣2+2
=2﹣2+3
=3.
20.(4分)化简(+a﹣2)÷.
【解答】解:原式=•
=
21.(6分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】证明:∵AB∥EF,
∴∠B=∠F.
又∵BD=CF,
∴BC=FD.
在△ABC与△EFD中,
∴△ABC≌△EFD(AAS),
∴AB=EF.
22.(6分)在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:
(1)该班共有 50 名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为 115.2° ;
(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
【解答】解:(1)
由题意可知该班的总人数=15÷30%=50(名)
故答案为:50;
(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)
补全条形统计图如图所示:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,
故答案为:115.2°;
(4)画树状图如图.
由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,
所以P(恰好选出一男一女)==.
23.(6分)已知,如图:反比例函数y=的图象经过点A(﹣3,b)过点A作x轴的垂线,垂足为B,S△AOB=3.
(1)求k,b的值;
(2)若一次函数y=ax+1的图象经过点A,且与x轴交于M,求AM的长.
【解答】解:(1)∵S△A0B=|x•y|=|k|=3,
∴|k|=6,
∵反比例函数图象位于第二、四象限,
∴k<0,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴k=﹣6,
∵反比例函数y=的图象经过点A(﹣3,b),
∴k=﹣3×b=﹣6,
解得b=2;
(2)把点A(﹣3,2)代入一次函数y=ax+1得,﹣3a+1=2,
解得a=﹣,
∴一次函数解析式为y=﹣x+1,
令y=0,则﹣x+1=0,
解得x=3,
所以,点M的坐标为(3,0),
∴AM===2.
24.(7分)如图,在一个20米高的楼顶上有一信号塔DC,某同学为了测量信号塔的高度,在地面的A处测得信号塔下端D的仰角为30°,然后他正对塔的方向前进了8米到达地面的B处,又测得信号塔顶端C的仰角为45°,CD⊥AB于点E,E、B、A在一条直线上.信号塔CD的高度是多少?
【解答】解:根据题意得:AB=8米,DE=20米,∠A=30°,∠EBC=45°,
在Rt△ADE中,AE=DE=20米,
∴BE=AE﹣AB=20﹣8(米),
在Rt△BCE中,CE=BE•tan45°=(20﹣8)×1=20﹣8(米),
∴CD=CE﹣DE=20﹣8﹣20=20﹣28(米).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.(7分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.
(1)求证:方程总有两个实数根;
(2)若方程有一个根小于1,求k的取值范围.
【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,
∴方程总有两个实数根.
(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,
∴x1=2,x2=k+1.
∵方程有一根小于1,
∴k+1<1,解得:k<0,
∴k的取值范围为k<0.
26.(8分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.
(1)求证:DB=DE;
(2)若AB=12,BD=5,求⊙O的半径.
【解答】(1)证明:∵AO=OB,
∴∠OAB=∠OBA,
∵BD是切线,
∴OB⊥BD,
∴∠OBD=90°,
∴∠OBE+∠EBD=90°,
∵EC⊥OA,
∴∠CAE+∠CEA=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠CEA=∠DEB,
∴∠EBD=∠BED,
∴DB=DE.
(2)作DF⊥AB于F,连接OE.
∵DB=DE,AE=EB=6,
∴EF=BE=3,OE⊥AB,
在Rt△EDF中,DE=BD=5,EF=3,
∴DF==4,
∵∠AOE+∠A=90°,∠DEF+∠A=90°,
∴∠AOE=∠DEF,
∴sin∠DEF=sin∠AOE==,
∵AE=6,
∴AO=.
∴⊙O的半径为.
27.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
【解答】解:(1)根据题意,得y=(2400﹣2000﹣x)(8+4×),
即y=﹣x2+24x+3200;
(2)由题意,得﹣x2+24x+3200=4800.
整理,得x2﹣300x+20000=0.
解这个方程,得x1=100,x2=200.
要使百姓得到实惠,取x=200元.
∴每台冰箱应降价200元;
(3)对于y=﹣x2+24x+3200=﹣(x﹣150)2+5000,
当x=150时,
y最大值=5000(元).
所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.
28.(10分)在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.
(1)当m=4时,求n的值;
(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;
(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.
【解答】解:(1)当y=x+3=0时,x=﹣3,
∴点A的坐标为(﹣3,0).
∵二次函数y=x2+mx+n的图象经过点A,
∴0=9﹣3m+n,即n=3m﹣9,
∴当m=4时,n=3m﹣9=3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)抛物线的对称轴为直线x=﹣,
当m=﹣2时,对称轴为x=1,n=3m﹣9=﹣15,
∴当﹣3≤x≤0时,y随x的增大而减小,
∴当x=0时,二次函数y=x2+mx+n的最小值为﹣15.
(3)①当对称轴﹣≤﹣3,即m≥6时,如图1所示.
在﹣3≤x≤0中,y=x2+mx+n的最小值为0,
∴此情况不合题意;
②当﹣3<﹣<0,即0<m<6时,如图2,
有,
解得:或(舍去),
∴m=2、n=﹣3;
③当﹣≥0,即m≤0时,如图3,
有,
解得:(舍去).
综上所述:m=2,n=﹣3.
由莲山课件提供http://www.5ykj.com/ 资源全部免费