湖北省孝感市2018年中考数学真题试题
一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不读、错涂或涂的代号超过一个,一律得0分)
1. 的倒数是( )
A. 4 B. -4 C. D. 16
【答案】B
【解析】分析:根据乘积是1的两个数互为倒数解答.
详解:∵-×(-4)=1,
∴的倒数是-4.
故选:B.
点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.
2. 如图,直线,若,,则的度数为( )
A. B. C. D.
【答案】C
【解析】分析:依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.
详解:∵∠1=42°,∠BAC=78°,
∴∠ABC=60°,
又∵AD∥BC,
∴∠2=∠ABC=60°,
故选:C.
点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.
3. 下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )
21
A. B. C. D.
【答案】B
【解析】分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.
详解:A、此不等式组的解集为x<2,不符合题意;
B、此不等式组的解集为2<x<4,符合题意;
C、此不等式组的解集为x>4,不符合题意;
D、此不等式组的无解,不符合题意;
故选:B.
点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.
4. 如图,在中,,,,则等于( )
A. B. C. D.
【答案】A
【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.
详解:在Rt△ABC中,∵AB=10、AC=8,
∴BC=,
∴sinA=.
故选:A.
点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.
5. 下列说法正确的是( )
21
A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查
B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定
C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是
D. “任意画一个三角形,其内角和是”这一事件是不可能事件
【答案】D
【解析】分析:根据随机事件的概念以及概率的意义结合选项可得答案.
详解:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;
B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;
C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;
D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确.
故选:D.
点睛:此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.
6. 下列计算正确的是( )
A. B.
C. D.
【答案】A
【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.
详解:A、,正确;
B、(a+b)2=a2+2ab+b2,故此选项错误;
C、2+,无法计算,故此选项错误;
D、(a3)2=a6,故此选项错误;
故选:A.
点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.
7. 如图,菱形的对角线,相交于点,,,则菱形的周长为( )
21
A. 52 B. 48 C. 40 D. 20
【答案】A
【解析】分析:由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.
详解:∵菱形ABCD中,BD=24,AC=10,
∴OB=12,OA=5,
在Rt△ABO中,AB==13,
∴菱形ABCD的周长=4AB=52,
故选:A.
点睛:此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质
8. 已知,,则式子的值是( )
A. 48 B. C. 16 D. 12
【答案】D
【解析】分析:先通分算加法,再算乘法,最后代入求出即可.
详解:(x-y+)(x+y-)
=
=
=(x+y)(x-y),
当x+y=4,x-y=时,原式=4×=12,
故选:D.
点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.
9. 如图,在中,,,,动点从点开始沿向点以以
21
的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是( )
A. B. C. D.
【答案】C
【解析】分析:根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
详解:由题意可得:PB=3-t,BQ=2t,
则△PBQ的面积S=PB•BQ=(3-t)×2t=-t2+3t,
故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
故选:C.
点睛:此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.
10. 如图,是等边三角形,是等腰直角三角形,,于点,连分别交,于点,,过点作交于点,则下列结论:
①;②;③;④;⑤.
A. 5 B. 4 C. 3 D. 2
21
【答案】B
【解析】分析:①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP=x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得,从而得出a与x的关系即可判断.
详解:∵△ABC为等边三角形,△ABD为等腰直角三角形,
∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,
∴△CAD是等腰三角形,且顶角∠CAD=150°,
∴∠ADC=15°,故①正确;
∵AE⊥BD,即∠AED=90°,
∴∠DAE=45°,
∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,
∴∠AGF=75°,
由∠AFG≠∠AGF知AF≠AG,故②错误;
记AH与CD的交点为P,
由AH⊥CD且∠AFG=60°知∠FAP=30°,
则∠BAH=∠ADC=15°,
在△ADF和△BAH中,
∵,
∴△ADF≌△BAH(ASA),
21
∴DF=AH,故③正确;
∵∠AFG=∠CBG=60°,∠AGF=∠CGB,
∴△AFG∽△CBG,故④正确;
在Rt△APF中,设PF=x,则AF=2x、AP=x,
设EF=a,
∵△ADF≌△BAH,
∴BH=AF=2x,
△ABE中,∵∠AEB=90°、∠ABE=45°,
∴BE=AE=AF+EF=a+2x,
∴EH=BE-BH=a+2x-2x=a,
∵∠APF=∠AEH=90°,∠FAP=∠HAE,
∴△PAF∽△EAH,
∴,即,
整理,得:2x2=(-1)ax,
由x≠0得2x=(-1)a,即AF=(-1)EF,故⑤正确;
故选:B.
点睛:本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.
二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡相应位置上)
11. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是__________千米.
【答案】
【解析】试题分析:科学技术是指a×10n,1≤lal