2018北师大版高中数学必修三第3章章末综合检测三含解析
加入VIP免费下载

本文件来自资料包: 《2018北师大版高中数学必修三第3章章末综合检测三含解析》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 章末综合检测(三)‎ ‎(时间:120分钟,满分:150分)‎ 一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.给出下列四个命题:‎ ‎①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;‎ ‎②“当x为某一实数时,可使x2≤0”是不可能事件;‎ ‎③“明天天津市要下雨”是必然事件;‎ ‎④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件.‎ 其中正确命题的个数是(  )‎ A.0           B.1‎ C.2 D.3‎ 解析:选C.①④正确.‎ ‎2.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(  )‎ A.至少有1个黑球与都是红球 B.至少有1个黑球与都是黑球 C.至少有1个黑球与至少有1个红球 D.恰有1个黑球与恰有2个黑球 解析:选D.A中的两个事件是对立事件,不符合要求;B中的两个事件是包含关系,不是互斥事件,不符合要求;C中的两个事件都包含“一个黑球、一个红球”这一事件,不是互斥事件;D中是互斥而不对立的两个事件.故选D.‎ ‎3.某个地区从某年起几年内的新生婴儿数及其中的男婴数如下表:‎ 时间范围 ‎1年内 ‎2年内 ‎3年内 ‎4年内 新生婴儿数 ‎5 544‎ ‎9 013‎ ‎13 520‎ ‎17 191‎ 男婴数 ‎2 716‎ ‎4 899‎ ‎6 812‎ ‎8 590‎ 这一地区男婴出生的概率约是(  )‎ A.0.4 B.0.5‎ C.0.6 D.0.7‎ 解析:选B.由表格可知,男婴出生的频率依次约为0.49,0.54,0.50,0.50,故这一地区男婴出生的概率约为0.5.故选B.‎ ‎4.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A. B. C. D. 解析:选B.记“至少需要等待15秒才出现绿灯”为事件A,则P(A)==.‎ ‎5.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是(  )‎ A. B. C. D. 解析:选C.从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概型的概率计算公式,所求的概率为=.故选C.‎ ‎6.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(  )‎ A. B. C. D. 解析:选A.因为两位同学参加兴趣小组的所有的结果有9个,其中这两位同学参加同一兴趣小组的结果有3个,所以由古典概型的概率计算公式得所求概率为=.‎ ‎7.任取一个三位正整数N,则对数log2N是一个正整数的概率是(  )‎ A. B. C. D. 解析:选C.三位正整数有100~999,共900个,而满足log2N为正整数的N有27,28,29,共3个,故所求事件的概率为=.‎ ‎8.在长为12 cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20 cm2的概率为(  )‎ A. B. C. D. 解析:选C.设|AC|=x cm,0<x<12,则|CB|=(12-x) cm,要使矩形面积大于20 cm2,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 只要x(12-x)>20,则x2-12x+20<0,2<x<10,所以所求概率为P==,故选C.‎ ‎9.小明通过做游戏的方式来确定周末的活动,他随机往单位圆内投掷一颗弹珠(大小忽略),若弹珠到圆心的距离大于,则周末去逛公园;若弹珠到圆心的距离小于,则去踢足球;否则,在家看书.则小明周末不在家看书的概率为(  )‎ A. B. C. D. 解析:选C.由题意画出示意图,如图所示.表示小明在家看书的区域如图中阴影部分所示,则他在家看书的概率为=,因此他不在家看书的概率为1-=,故选C.‎ ‎10.小莉与小明一起用A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A立方体朝上的数字为x,小明掷的B立方体朝上的数字为y,来确定点P(x,y),那么他们各掷一次所确定的点P(x,y)落在已知抛物线y=-x2+4x上的概率为(  )‎ A. B. C. D. 解析:选C.根据题意,两人各掷立方体一次,每人都有6种可能性,则(x,y)的情况有36种,即P点有36种可能,而y=-x2+4x=-(x-2)2+4,即(x-2)2+y=4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为=.‎ ‎11.如果从不包括大、小王的一堆扑克牌中随机抽取一张,那么取到红心牌(事件A)的概率为,取到方片牌(事件B)的概率是,则取到红色牌(事件C)的概率和取到黑色牌(事件D)的概率分别是(  )‎ A., B., C., D., 解析:选A.因为C=A+B,且A,B不会同时发生,即A,B是互斥事件,所以P(C)=P(A)+P(B)=+=.‎ 又C,D是互斥事件,且C+D是必然事件,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 所以C,D互为对立事件,‎ 则P(D)=1-P(C)=1-=.‎ ‎12.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是(  )‎ A. B. C. D. 解析:选D.记3个红球分别为a1,a2,a3,2个白球分别为b1,b2.从3个红球、2个白球中任取3个,则所包含的基本事件有{a1,a2,a3},{a1,a2,b1},{a1,a2,b2},{a1,a3,b1},{a1,a3,b2},{a2,a3,b1},{a2,a3,b2},{a1,b1,b2},{a2,b1,b2},{a3,b1,b2},共10个.由于每个基本事件发生的机会均等,因此这些基本事件的发生是等可能的.‎ 用A表示“所取的3个球中至少有1个白球”,则其对立事件表示“所取的3个球中没有白球”,则事件包含的基本事件有1个:{a1,a2,a3}.‎ 所以P()=.‎ 故P(A)=1-P()=1-=.‎ 二、填空题:本题共4小题,每小题5分.‎ ‎13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高分别为:(单位:cm)‎ ‎162,148,154,165,168,172,175,162,171,170,150,151,152,160,163,175,164,179,149,172.‎ 根据样本频率分布估计总体分布的原理,在该校高二年级任抽一名同学身高在155.5 cm~170.5 cm之间的概率为________.(用分数表示)‎ 解析:样本中有8人身高在155.5 cm~170.5 cm之间,所以估计该校高二年级任抽一名同学身高在155.5 cm~170.5 cm之间的概率为=.‎ 答案: ‎14.在等腰直角三角形ABC中,在斜边AB上任取一点M,则AM>AC的概率是________.‎ 解析:设CA=CB=m(m>0),则AB=m,P(AM>AC)===1-.‎ 答案:1- 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎15.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________.‎ 解析:甲,乙,丙站成一排有(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种.‎ 甲,乙相邻而站有(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种.‎ 所以甲,乙两人相邻而站的概率为=.‎ 答案: ‎16.袋中含有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,至少得到1个白球的概率是,则从中任意摸出2个球,得到的都是白球的概率为________.‎ 解析:因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种情况,没有得到白球的概率为,设白球个数为x,则黑球个数为5-x,那么,可知白球有3个,黑球有2个,因此可知从中任意摸出2个球,得到的都是白球的概率为.‎ 答案: 三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.‎ ‎17.(本小题满分10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.‎ ‎(1)所得的三位数大于400;‎ ‎(2)所得的三位数是偶数.‎ 解:1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.‎ ‎(1)大于400的三位数的个数为4,所以P==.‎ ‎(2)三位数为偶数的有156,516,共2个,‎ 所以相应的概率为P==.‎ ‎18.(本小题满分12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:‎ ‎(1)所取的2道题都是甲类题的概率;‎ ‎(2)所取的2道题不是同一类题的概率.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 解:将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为:{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个,而且这些基本事件的出现是等可能的.‎ ‎(1)用A表示“都是甲类题”这一事件,则A包含的基本事件有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,所以P(A)==.‎ ‎(2)用B表示“不是同一类题”这一事件,则B包含的基本事件有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个,所以P(B)=.‎ ‎19.(本小题满分12分)某河流上的一座水力发电站,每年6月份的发电量y(单位:万千瓦时)与该河上游在6月份的降雨量x(单位:mm)有关.据统计,当x=70时,y=460;x每增加10,y增加5.已知近20年x的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.‎ ‎(1)完成如下的频率分布表:‎ 近20年6月份降雨量频率分布表 降雨量 ‎70‎ ‎110‎ ‎140‎ ‎160‎ ‎200‎ ‎220‎ 频率 ‎0.05‎ ‎0.2‎ ‎0.1‎ ‎(2)将频率视为概率,试估计今年6月份该水力发电站的发电量低于490万千瓦时或超过530万千瓦时的概率.‎ 解:(1)在所给数据中,降雨量为110 mm的有3个,为160 mm的有7个,为200 mm的有3个.故近20年6月份降雨量频率分布表为:‎ 降雨量 ‎70‎ ‎110‎ ‎140‎ ‎160‎ ‎200‎ ‎220‎ 频率 ‎0.05‎ ‎0.15‎ ‎0.2‎ ‎0.35‎ ‎0.15‎ ‎0.1‎ ‎(2)由已知可得y=0.5x+425,‎ 记“发电量低于490万千瓦时或超过530万千瓦时”为事件A,‎ 则P(A)=P(y530)‎ ‎=P(x210)‎ ‎=P(x=70)+P(x=110)+P(x=220)‎ ‎=0.05+0.15+0.1‎ ‎=0.3.‎ 因此估计今年6月份该水力发电站的发电量低于490万千瓦时或超过530万千瓦时的概率为0.3.‎ ‎20.(本小题满分12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 参加书法社团 未参加书法社团 参加演讲社团 ‎8‎ ‎5‎ 未参加演讲社团 ‎2‎ ‎30‎ ‎(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;‎ ‎(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.‎ 解:(1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,‎ 故至少参加上述一个社团的共有45-30=15(人),‎ 所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P==.‎ ‎(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.‎ 根据题意,这些基本事件的出现是等可能的.‎ 事件“A1被选中且B1未被选中”所包含的基本事件有:{A1,B2},{A1,B3},共2个.‎ 因此A1被选中且B1未被选中的概率为P=.‎ ‎21.(本小题满分12分)求解下列各题:‎ ‎(1)在区间[0,4]上随机取两个整数m,n,求关于x的一元二次方程x2-x+m=0有实数根的概率P(A);‎ ‎(2)在区间[0,4]上随机取两个数m,n,求关于x的一元二次方程x2-x+m=0有实数根的概率P(B).‎ 解:方程x2-x+m=0有实数根,‎ 则Δ=n-4m≥0,‎ ‎(1)由于m,n∈[0,4],且m,n是整数,‎ 因此列举可得m,n可能的取值共有25组.‎ 又满足n-4m≥0的m,n的取值有,,,,,,共6组.‎ 因此,原方程有实数根的概率为P(A)=.‎ ‎(2)由于对应的区域(如图中正方形区域所示)面积为16,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 而n-4m≥0(m,n∈[0,4])表示的区域(如图中阴影部分所示)面积为×1×4=2.‎ 因此,原方程有实数根的概率为P(B)==.‎ ‎22.(本小题满分12分)城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:min):‎ ‎ 组别 候车时间 人数 一 ‎[0,5)‎ ‎2‎ 二 ‎[5,10)‎ ‎6‎ 三 ‎[10,15)‎ ‎4‎ 四 ‎[15,20)‎ ‎2‎ 五 ‎[20,25]‎ ‎1‎ ‎(1)求这15名乘客的平均候车时间;‎ ‎(2)估计这60名乘客中候车时间少于10 min的人数;‎ ‎(3)若从上表第三、四组的6人中选2人做进一步调查,求抽到的2人恰好来自不同组的概率.‎ 解:(1)×(2.5×2+7.5×6+12.5×4+17.5×2+22.5×1)=×157.5=10.5,‎ 故这15名乘客的平均候车时间为10.5 min.‎ ‎(2)由频率估计概率,可知侯车时间少于10 min的概率为=,‎ 故这60名乘客中候车时间少于10 min的人数约为60×=32.‎ ‎(3)记第三组的4名乘客为a1,a2,a3,a4,第四组的2名乘客为b1,b2.从6人中选2人的所有可能情况为(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2),共15种,其中2人恰好来自不同组的情况为(a1,b1),(a1,b2),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(a4,b1),(a4,b2),共8种,‎ 故所求概率为.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料

推荐资源
天天课堂