2018-2019年九年级数学上期末模拟试卷(仪征市带答案)
加入VIP免费下载

本文件来自资料包: 《2018-2019年九年级数学上期末模拟试卷(仪征市带答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
九年级数学上学期期末模拟测试 一、选择题:‎ ‎1、(2018•泰州)已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是(  )‎ A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0‎ ‎2、如图,在平行四边形ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是(  )‎ A.π B.2π C.3π D.6π ‎3、某科普小组有5名成员,身高分别如下(单位:cm) : 160,165,170,163,167.增加1名身高为165 cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是( )‎ ‎ A.平均数不变,方差不变 B.平均数不变,方差变大 ‎ C.平均数不变,方差变小 D.平均数变小,方差不变 ‎4、在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为(  )‎ A. B. C.34 D.10‎ ‎5、如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是(  )‎ ‎6、(2018•宜宾)一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为(  )‎ A.﹣2 B.1 C.2 D.0‎ ‎7、如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为(  )‎ A.π﹣2 B.π﹣ C.π﹣2 D.π﹣‎ ‎8、已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为(  )‎ A.2cm B.4cm C.2cm或4cm D.2cm或4cm ‎9、抛物线y=3(x﹣1)2+1的顶点坐标是(  )‎ A.(1,1) B.(﹣1,1) C.(﹣1,﹣1) D.(1,﹣1)‎ ‎10、下列说法正确的是( )‎ A.一个不透明的袋中装有‎3‎个红球,‎5‎个白球,任意摸出一个球是红球的概率是3/5‎ B.一次摸奖活动的中奖率是l%‎,那么摸‎100‎次奖必然会中一次奖 C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件 D.在‎367‎人中至少有两个人的生日相同 ‎11、欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠‎ ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是(  )‎ A.AC的长 B.AD的长 C.BC的长 D.CD的长 ‎12、如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②﹣1≤a≤﹣;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为(  )‎ A.1个 B.2个 C.3个 D.4个 二、填空题:‎ ‎13、已知一组从小到大排列的数据:的平均数与中位数都是7,则这组数据的众数是 .‎ ‎14、(2018•黄冈)如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=  .‎ ‎15、如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE= .‎ ‎16、某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为 ‎ ‎17、在一个不透明的盒子中装有 n个球,它们除了颜色之外其它都没有区别,其中含有 3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在 0.03,那么可以推算出 n的值大约是 .‎ ‎18、在一个不透明的盒子中装有‎6‎个白球,若干个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球是白球的概率是1/3,则黄球的个数为___.‎ ‎19、某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有 个班级参赛 ‎20、若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为 .‎ ‎21、为了满足顾客的需求,某商场将5 kg奶糖、3 kg酥心糖和2 kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖的售价为每千克20元,水果糖的售价为每千克15元,则混合后什锦糖的售价应为每千克 元。‎ ‎22、(2018•烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为   .‎ 三、解答题:‎ ‎23、已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.‎ ‎24、如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.‎ ‎(1)求证:四边形ABFC是菱形;‎ ‎(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.‎ ‎25、‎ ‎(2018•安顺)某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.‎ ‎(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?‎ ‎(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,求2017年该地至少有多少户享受到优先搬迁租房奖励.‎ ‎26、某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:‎ 根据录用程序,组织200名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.‎ ‎(1)请算出三人的民主评议得分;‎ ‎(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.01) ?‎ ‎(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4,3,3的比例确定个人成绩,那么谁将被录用?‎ ‎27、如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.‎ ‎(1)求此抛物线的解析式.‎ ‎(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.‎ 一、选择题:‎ ‎1、A ‎2、C ‎3、C ‎4、D ‎5、B ‎6、D ‎7、C ‎8、C ‎9、A ‎10、D ‎11、B ‎12、D 二、填空题:‎ ‎13、5‎ ‎14、2√3‎ ‎15、8cm ‎16、20%‎ ‎17、100‎ ‎18、12‎ ‎19、6‎ ‎20、65π ‎ ‎21、29‎ ‎22、(﹣1,﹣2)‎ 三、解答题:‎ ‎23、解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),‎ ‎∴,‎ 解得,‎ ‎,‎ 即a的值是1,b的值是﹣2.‎ ‎24、(1)证明:∵AB是直径,‎ ‎∴∠AEB=90°,‎ ‎∴AE⊥BC,‎ ‎∵AB=AC,‎ ‎∴BE=CE,‎ ‎∵AE=EF,‎ ‎∴四边形ABFC是平行四边形,‎ ‎∵AC=AB,‎ ‎∴四边形ABFC是菱形.‎ ‎(2)设CD=x.连接BD.‎ ‎∵AB是直径,‎ ‎∴∠ADB=∠BDC=90°,‎ ‎∴AB2﹣AD2=CB2﹣CD2,‎ ‎∴(7+x)2﹣72=42﹣x2,‎ 解得x=1或﹣8(舍弃)‎ ‎∴AC=8,BD==,‎ ‎∴S菱形ABFC=8.‎ ‎∴S半圆=•π•42=8π.‎ ‎25、解:(1)设该地投入异地安置资金的年平均增长率为x,‎ 根据题意得:1280(1+x)2=1280+1600,‎ 解得:x1=0.5=50%,x2=﹣2.5(舍去).‎ 答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.‎ ‎(2)设2017年该地有a户享受到优先搬迁租房奖励,‎ 根据题意得:8×1000×400+5×400(a﹣1000)≥5000000,‎ 解得:a≥1900.‎ 答:2017年该地至少有1900户享受到优先搬迁租房奖励.‎ ‎26、(1)三人的民主评议得分分别为50分,80分,70分;‎ ‎(2)乙将被录用;‎ ‎(3)丙将被录用.‎ ‎27、解:(1)由题意得:x=﹣=﹣=﹣2,c=2,‎ 解得:b=4,c=2,‎ 则此抛物线的解析式为y=x2+4x+2;‎ ‎(2)∵抛物线对称轴为直线x=﹣2,BC=6,‎ ‎∴B横坐标为﹣5,C横坐标为1,‎ 把x=1代入抛物线解析式得:y=7,‎ ‎∴B(﹣5,7),C(1,7),‎ 设直线AB解析式为y=kx+2,‎ 把B坐标代入得:k=﹣1,即y=﹣x+2,‎ 作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,‎ 可得△AQH∽△ABM,‎ ‎∴=,‎ ‎∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,‎ ‎∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,‎ ‎∵BM=5,‎ ‎∴QH=2或QH=3,‎ 当QH=2时,把x=﹣2代入直线AB解析式得:y=4,‎ 此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);‎ 当QH=3时,把x=﹣3代入直线AB解析式得:y=5,‎ 此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),‎ 综上,P的坐标为(﹣6,0)或(﹣13,0).‎

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料