2018-2019年九年级数学上期末模拟试卷(东明县附答案)
加入VIP免费下载

本文件来自资料包: 《2018-2019年九年级数学上期末模拟试卷(东明县附答案)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
九年级上学期期末数学模拟测试 一、选择题:‎ ‎1、以下事件中不可能事件是( )‎ A.一个角和它的余角的和是‎90‎‎∘‎ B.连接掷‎10‎次骰子都是‎6‎点朝上 C.一个有理数与它的倒数之和等于‎0‎ D.一个有理数小于它的倒数 ‎2、(2018•广西)某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为(  )‎ A.80(1+x)2=100 B.100(1﹣x)2=80 ‎ C.80(1+2x)=100 D.80(1+x2)=100‎ ‎3、对于抛物线y=ax2+(2a﹣1)x+a﹣3,当x=1时,y>0,则这条抛物线的顶点一定在(  )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎4、如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是(  )‎ A.70° B.35° C.45° D.60°‎ ‎5、一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是(  )‎ A.无实数根 B.有一个正根,一个负根 C.有两个正根,且都小于3 D.有两个正根,且有一根大于3‎ ‎6、若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P(  )‎ A.有且只有1个 B.有且只有2个 C.有且只有3个 D.有无穷多个 ‎7、对于反比例函数y=﹣,下列说法不正确的是(  )‎ A.图象分布在第二、四象限 B.当x>0时,y随x的增大而增大 C.图象经过点(1,﹣2)‎ D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2‎ ‎8、(2018•眉山)我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是(  )‎ A.8% B.9% C.10% D.11%‎ ‎9、如图,已知∠POQ=30°,点A、B在射线OQ上(点A在点O、B之间),半径长为2的⊙A与直线OP相切,半径长为3的⊙B与⊙A相交,那么OB的取值范围是(  )‎ A.5<OB<9 B.4<OB<9 C.3<OB<7 D.2<OB<7‎ ‎10、如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为(  )‎ A.1 B.2 C.3 D.4‎ ‎11、如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为(  )‎ A.2π B. C. D.‎ ‎12、(2018•荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若方程a(x+5)(x﹣1)=﹣1有两个根x1和x2,且x1<x2,则﹣5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的 和为﹣4.其中正确的结论有(  )‎ A.1个 B.2个 C.3个 D.4个 二、填空题:‎ ‎13、已知一元二次方程x2+k﹣3=0有一个根为1,则k的值为 .‎ ‎14、小明和小丽按如下规则做游戏:桌面上放有 7 根火柴棒,每次取 1 根或 2 根, 最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是 .‎ ‎15、如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是 .‎ ‎16、两个装有乒乓球的盒子,其中一个装有‎2‎个白球‎1‎个黄球,另一个装有‎1‎个白球‎2‎个黄球.现从这两个盒中随机各取出一个球,则取出的两个球一个是白球一个是黄球的概率为________;至少有一个是白球的概率为________.‎ ‎17、将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是   .‎ ‎18、已知点P(-2,3),则点P关于原点对称的点的坐标是________.‎ ‎19、已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k的取值范围是   .‎ ‎20、某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为 .‎ ‎21、在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为 .‎ ‎22、若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为 .‎ 三、解答题:‎ ‎23、如图,在正方形方格中,阴影部分是涂黑 3 个小正方形所形成的图案. (1)如果将一粒米随机地抛在这个正方形方格上,那么米粒落在阴影部分的概率是多少? (2)现将方格内空白的小正方形(A,B,C,D,E,F)中任取 2 个涂黑,得到新图案,请用列表或画树状图的方法,求新图案是轴对称图形的概率.‎ ‎24、如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.‎ ‎(1)求证:四边形ABFC是菱形;‎ ‎(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.‎ ‎25、(2018•沈阳)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.‎ 假设该公司2、3、4月每个月生产成本的下降率都相同.‎ ‎(1)求每个月生产成本的下降率;‎ ‎(2)请你预测4月份该公司的生产成本.‎ ‎26、反比例函数y=(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).‎ ‎(1)求反比例函数的解析式及B点的坐标;‎ ‎(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.‎ ‎27、传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:‎ y=‎ ‎(1)李明第几天生产的粽子数量为280只?‎ ‎(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)‎ 一、选择题:‎ ‎1、C ‎2、A ‎3、C ‎4、B ‎5、D ‎6、B ‎7、D ‎8、C ‎9、A ‎10、D ‎11、D ‎12、B 二、填空题:‎ ‎13、2‎ ‎14、1‎ ‎15、80°‎ ‎16、5/9 7/9‎ ‎17、y=x2+2‎ ‎18、(2,-3)‎ ‎19、k<1‎ ‎20、80(1+x)2=100‎ ‎21、1/m ‎22、65π 三、解答题:‎ ‎23、解:(1)∵正方形网格被等分成 9 等份,其中阴影部分面积占其中的 3 份,‎ ‎∴米粒落在阴影部分的概率是 3/9=1/3‎ ‎(2)列表如下:‎ 由表可知,共有 30 种等可能结果,其中是轴对称图形的有 10 种,‎ 故新图案是轴对称图形的概率为 10/30=1/3‎ ‎24、(1)证明:∵AB是直径,‎ ‎∴∠AEB=90°,‎ ‎∴AE⊥BC,‎ ‎∵AB=AC,‎ ‎∴BE=CE,‎ ‎∵AE=EF,‎ ‎∴四边形ABFC是平行四边形,‎ ‎∵AC=AB,‎ ‎∴四边形ABFC是菱形.‎ ‎(2)设CD=x.连接BD.‎ ‎∵AB是直径,‎ ‎∴∠ADB=∠BDC=90°,‎ ‎∴AB2﹣AD2=CB2﹣CD2,‎ ‎∴(7+x)2﹣72=42﹣x2,‎ 解得x=1或﹣8(舍弃)‎ ‎∴AC=8,BD==,‎ ‎∴S菱形ABFC=8.‎ ‎∴S半圆=•π•42=8π.‎ ‎25、解:(1)设每个月生产成本的下降率为x,‎ 根据题意得:400(1﹣x)2=361,‎ 解得:x1=0.05=5%,x2=1.95(不合题意,舍去).‎ 答:每个月生产成本的下降率为5%.‎ ‎(2)361×(1﹣5%)=342.95(万元).‎ 答:预测4月份该公司的生产成本为342.95万元.‎ ‎26、解:(1)把A(1,3)代入y=得k=1×3=3,‎ ‎∴反比例函数解析式为y=;‎ 把B(3,m)代入y=得3m=3,解得m=1,‎ ‎∴B点坐标为(3,1);‎ ‎(2)作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,﹣3),‎ ‎∵PA+PB=PA′+PB=BA′,‎ ‎∴此时此时PA+PB的值最小,‎ 设直线BA′的解析式为y=mx+n,‎ 把A′(1,﹣3),B(3,1)代入得,解得,‎ ‎∴直线BA′的解析式为y=2x﹣5,‎ 当y=0时,2x﹣5=0,解得x=,‎ ‎∴P点坐标为(,0).‎ ‎27、解:(1)设李明第x天生产的粽子数量为280只,‎ 由题意可知:20x+80=280,‎ 解得x=10.‎ 答:第10天生产的粽子数量为420只.‎ ‎(2)由图象得,当0≤x<10时,p=2;‎ 当10≤x≤20时,设P=kx+b,‎ 把点(10,2),(20,3)代入得,,‎ 解得,‎ ‎∴p=0.1x+1,‎ ‎①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);‎ ‎②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,‎ ‎∵x是整数,‎ ‎∴当x=10时,w最大=560(元);‎ ‎③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,‎ ‎∵a=﹣3<0,‎ ‎∴当x=﹣=13时,w最大=578(元);‎ 综上,当x=13时,w有最大值,最大值为578.‎

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料