【期末专题复习】浙教版九年级数学上册 第三章 圆的基本性质 单元检测试卷
一、单选题(共10题;共30分)
1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是( )
A. 点P在⊙O内 B. 点P在⊙O上 C. 点P在⊙O外 D. 无法判断
2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )
A. 42° B. 21° C. 84° D. 60°
3.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为( )
A. 3 B. 2.5 C. 4 D. 3.5
4.已知AB=7cm,则过点A,B,且半径为3cm的圆有( )
A. 0个 B. 1个 C. 2个 D. 无数个
5.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是( )
A. 12 B. 33 C. 22 D. 3
6.如图,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,则∠AOB'的度数是( )
A. 25° B. 30° C. 35° D. 40°
7.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为6,∠ADC=60°,则劣弧AC的长为( )
A. 2π B. 4π C. 5π D. 6π
第 13 页 共 13 页
8.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为 ( )
A. 60º B. 30º C. 45º D. 50º
9.如图,将△ABC绕点C顺时针方向旋转40°,得△A′CB′,若AC⊥A′B′,则∠BAC等于( )
A. 50° B. 60° C. 70° D. 80°
10.如图,点C是⊙O上一点,⊙O的半径为 22 ,D、E分别是弦AC、BC上一动点,且OD=OE= 2 ,则AB的最大值为( )
A. 26 B. 23 C. 22 D. 42
二、填空题(共10题;共30分)
11.已知AB是⊙O的弦,AB=8cm,OC⊥AB与C,OC=3cm,则⊙O的直径________cm.
12.如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是________.
13.如图:在△ABC中,∠A、∠B的对边分别为a、b,且∠C=90°,分别以AC、BC为直径作半圆,则图中阴影部分的面积为________
14.在矩形ABCD中,AB=4,BC=6,动点P为矩形边上的一点,点P沿着B﹣C的路径运动(含点B和点C),则△ADP的外接圆的圆心O的运动路径长是________.
第 13 页 共 13 页
15.如图,已知点A、B、C、D均在以BC为直径的圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10,则图中阴影部分的面积为________.
16.如图,AB是⊙O的直径,AB=15,AC=9,则cos∠ADC=________.
17.如图,已知A、B两点的坐标分别为(2,0)、(0,4),P是△AOB外接圆⊙C上的一点,且∠AOP=45°,则点P的坐标为________.
18.下列说法:①弦是直径;②直径是弦;③过圆心的线段是直径;④一个圆的直径只有一条.其中正确的是 ________ (填序号).
19.如图,圆O是△ABC的外接圆,∠A=68°,则∠OBC的大小是________.
20.(2017•泰州)如图,在平面直角坐标系xOy中,点A,B,P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为________.
三、解答题(共9题;共60分)
第 13 页 共 13 页
21.(2017•宁波)在 4×4 的方格中,△ABC的三个顶点都在格点上.
(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);
(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.
22.如图, BE 是⊙D的 14 圆周,点C在 BE 上运动,求∠BCD的取值范围.
23.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?
第 13 页 共 13 页
24.如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D.求证:
(1)D是BC的中点;
(2)△BEC∽△ADC.
25.如图,在⊙O的内接四边形ABCD中,AB=AD,∠C=120°,点E在AD∧上.
(1)求∠AED的度数;
(2)若⊙O的半径为2,则AD∧的长为多少?
(3)连接OD,OE,当∠DOE=90°时,AE恰好是⊙O的内接正n边形的一边,求n的值.
26.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.
(1)求证:△BDG∽△DEG;
(2)若EG·BG=4,求BE的长.
第 13 页 共 13 页
27.△ABC和△ECD都是等边三角形
(1)如图1,若B、C、D三点在一条直线上,求证:BE=AD;
(2)保持△ABC不动,将△ECD绕点C顺时针旋转,使∠ACE=90°(如图2),BC与DE有怎样的位置关系?说明理由.
28.如图,已知四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连结AE、AF、EF.
(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
第 13 页 共 13 页
29.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,交连接AC、FC.
(1)求证:∠ACF=∠ADB;
(2)若点A到BD的距离为m,BF+CF=n,求线段CD的长;
(3)当⊙P的大小发生变化而其他条件不变时,DEAO的值是否发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.
第 13 页 共 13 页
答案解析部分
一、单选题
1.【答案】A
2.【答案】A
3.【答案】C
4.【答案】A
5.【答案】B
6.【答案】B
7.【答案】B
8.【答案】A
9.【答案】A
10.【答案】A
二、填空题
11.【答案】10
12.【答案】4- 89 π
13.【答案】18πa2+b2-12ab
14.【答案】94
15.【答案】3
16.【答案】45
17.【答案】(3,3)
18.【答案】②
19.【答案】22°
20.【答案】(7,4)或(6,5)或(1,4)
三、解答题
21.【答案】(1)解:画出下列其中一个即可.
第 13 页 共 13 页
(2)解:
22.【答案】解:∵ BE 是⊙D的 14 圆周,
∴∠BDE= 14 ×360°=90°,
∵DB=DC,
∴∠B=∠BCD,
∴∠BCD= 12 (180°﹣∠BDC)=90°﹣ 12 ∠BDC,
而0≤∠BDC≤90°,
∴45°≤∠BCD≤90°
23.【答案】解:如图,
过点A作AC⊥ON,
∵∠MON=30°,OA=80米,
∴AC=40米,
当第一台拖拉机到B点时对学校产生噪音影响,此时AB=50,
由勾股定理得:BC=30,
第一台拖拉机到D点时噪音消失,
所以CD=30.
由于两台拖拉机相距30米,则第一台到D点时第二台在C点,还须前行30米后才对学校没有噪音影响.
所以影响时间应是:90÷5=18秒.
答:这两台拖拉机沿ON方向行驶给小学带来噪音影响的时间是18秒
24.【答案】解:(1)证明: ∵AB为⊙O的直径,
∴∠BDA=90°,
∴AD⊥BC.
∵AB=AC.
∴BD=CD,
∴D是BC的中点;
(2)∵AB=AC,
∴∠C=∠ABD,
∵AB为⊙O的直径,
第 13 页 共 13 页
∴∠ADB=∠BEC=90°,
∴△BEC∽△ADC;
25.【答案】解:(1)连接BD,如图1所示:
∵四边形ABCD是⊙O的内接四边形,
∴∠BAD+∠C=180°,
∵∠C=120°,
∴∠BAD=60°,
∵AB=AD,
∴△ABD是等边三角形,
∴∠ABD=60°,
∵四边形ABDE是⊙O的内接四边形,∴∠AED+∠ABD=180°,
∴∠AED=120°;
(2)∵∠AOD=2∠ABD=120°,
∴AD∧的长=120×π×2180=4π3;
(3)连接OA,如图2所示:
∵∠ABD=60°,
∴∠AOD=2∠ABD=120°,
∵∠DOE=90°,
∴∠AOE=∠AOD﹣∠DOE=30°,
∴n=360°30°=12.
26.【答案】(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,
∴∠FDC=∠EBC,∵BE平分∠DBC,
∴∠DBE=∠EBC,∴∠FDC=∠EBD,
∵∠DGE=∠DGE,∴△BDG∽△DEG.
(2)解:∵△BCE≌△DCF,
∴∠F=∠BEC,∠EBC=∠FDC,
∵四边形ABCD是正方形,
第 13 页 共 13 页
∴∠DCB=90°,∠DBC=∠BDC=45°,
∵BE平分∠DBC,
∴∠DBE=∠EBC=22.5°=∠FDC,
∴∠BDF=45°+22.5°=67.5°,
∠F=90°-22.5°=67.5°=∠BDF,
∴BD=BF,∵△BCE≌△DCF,
∴∠F=∠BEC=67.5°=∠DEG,
∴∠DGB=180°-22.5°-67.5°=90°,
即BG⊥DF,∵BD=BF,∴DF=2DG,
∵△BDG∽△DEG,BG·EG=4,
∴DGEG=BGDG,
∴BG·EG=DG·DG=4,
∴DG=2,∴BE=DF=2DG=4.
27.【答案】解:(1)∵△ABC和△ECD都是等边三角形,∴AC=BC,EC=DC,∠ACB=∠ECD=60°.
∴∠ACB+∠ACE=∠ECD+∠ACE,即∠ACD=∠BCE.
∴△ACD≌△BCE. ∴AD=BE.
(2)BC垂直平分DE,理由如下:
如图,
延长BC交DE于M,
∵∠ACB=60°,∠ACE=90°,∴∠ECM=180°-∠ACB-∠ACE=30°.
∵∠DCM=∠ECD-∠ECM=30°,∴∠ECM=∠DCM.
∵△ECD是等边三角形,∴CM垂直平分DE,即BC垂直平分DE.
28.【答案】解;(1)∵四边形ABCD是正方形,
∴AD=AB,∠D=∠ABC=90°,
∴∠ABF=90°,
在△ADE和△ABF中,
AB=AD∠ABF=∠ADEBF=DE,
∴△ADE≌△ABF(SAS)
(2)A、90;
(3)∵在正方形ABCD中,AD=BC=8,DE=6,∠D=90°,
第 13 页 共 13 页
∴AE=AD2+DE2=10,
∵△ABF可以由△ADE绕A点顺时针方向旋转90°得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面积=12AE2=12×100=50(平方单位).
29.【答案】(1)证明:连接AB,
∵OP⊥BC,
∴BO=CO,
∴AB=AC,
又∵AC=AD,
∴AB=AD,
∴∠ABD=∠ADB,
又∵∠ABD=∠ACF,
∴∠ACF=∠ADB.
(2)解:过点A作AM⊥CF交CF的延长线于M,过点A作AN⊥BF于N,连接AF,
则AN=m,
∴∠ANB=∠AMC=90°,
在△ABN和△ACM中
, ∠ANB=∠AMC∠ABN=∠ACMAB=AC
∴Rt△ABN≌Rt△ACM(AAS)
∴BN=CM,AN=AM,
又∵∠ANF=∠AMF=90°,
在Rt△AFN和Rt△AFM中
AN=AMAF=AF,
∴Rt△AFN≌Rt△AFM(HL),
∴NF=MF,
∴BF+CF=BN+NF+CM﹣MF,
=BN+CM=2BN=n,
∴BN=n2,
∴在Rt△ABN中,AB2=BN2+AN2=m2+n22=m2+n24,
在Rt△ACD中,CD2=AB2+AC2=2AB2=2m2+n22,
∴CD=128m2+2n2.
(3)解:DEAO的值不发生变化,
第 13 页 共 13 页
过点D作DH⊥AO于H,过点D作DQ⊥BC于Q,
∵∠DAH+∠OAC=90°,∠DAH+∠ADH=90°,
∴∠OAC=∠ADH,
在△DHA和△AOC中
∠DHA=∠AOC∠OAC=∠ADHAD=AC,
∴Rt△DHA≌Rt△AOC(AAS),
∴DH=AO,AH=OC,
又∵BO=OC,
∴HO=AH+AO=OB+DH,
而DH=OQ,HO=DQ,
∴DQ=OB+OQ=BQ,
∴∠DBQ=45°,
又∵DH∥BC,
∴∠HDE=45°,
∴△DHE为等腰直角三角形,
∴DEDH=2,
∴DEAO=2.
第 13 页 共 13 页