2017年人教版九年级数学上册期末检测附答案
加入VIP免费下载

本文件来自资料包: 《2017年人教版九年级数学上册期末检测附答案》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
期末检测题(一)‎ ‎   时间:120分钟  满分:120分  ‎ ‎                               ‎ 一、选择题(每小题3分,共30分)‎ ‎1.(2016·厦门)方程x2-2x=0的根是(  )‎ A.x1=x2=0 B.x1=x2=‎2 C.x1=0,x2=2 D.x1=0,x2=-2‎ ‎2.(2016·大庆)下列图形中是中心对称图形的有(  )个.‎ A.1 B.‎2 C.3 D.4‎ ‎3.(2016·南充)抛物线y=x2+2x+3的对称轴是(  ) ‎ A.直线x=1 B.直线x=-‎1 C.直线x=-2 D.直线x=2‎ ‎4.(2016·黔西南州)如图,△ABC的顶点均在⊙O上,若∠A=36°,则∠OBC的度数为(  )‎ A.18° B.36° C.60° D.54°‎ 第4题图 ‎      第6题图 ‎5.(2016·葫芦岛)下列一元二次方程中有两个相等实数根的是(  )‎ A.2x2-6x+1=0 B.3x2-x-5=‎0 C.x2+x=0 D.x2-4x+4=0‎ ‎6.(2016·长春)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(  )‎ A.42° B.48° C.52° D.58°‎ ‎7.(2016·新疆)一个不透明的布袋里装有5个只有颜色不同的球,其中2个红球,3个白球,从布袋中随机摸出一个球,摸出红球的概率是(  )‎ A. B. C. D. ‎8.(2016·兰州)如图,用一个半径为‎5 cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了(  )‎ A.π cm B.2π cm C.3π cm D.5π cm ‎9.(2016·资阳)如图,在Rt△ABC中,∠ACB=90°,AC=2,以点B为圆心,BC的长为半径作弧,交AB于点D,若点D为AB的中点,则阴影部分的面积是(  )‎ A.2-π B.4-π C.2-π D.π 第8题图 ‎   第9题图 ‎   第10题图 ‎10.(2016·日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②‎2a+b=0;③‎4a+2b+c<0;④若(-,y1),(,y2)是抛物线上两点,则y1<y2,其中结论正确的是(  )‎ A.①② B.②③ C.②④ D.①③④‎ 二、填空题(每小题3分,共24分)‎ ‎11.(2016·日照)关于x的方程2x2-ax+1=0一个根是1,‎ 则它的另一个根为________.‎ ‎12.(2016·孝感)若一个圆锥的底面圆半径为‎3 cm,其侧面展开图的圆心角为120°,则圆锥的母线长是______cm.‎ ‎13.(2016·哈尔滨)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为________.‎ ‎14.(2016·黔东南州)如图,在△ACB中,∠BAC=50°,AC=2,AB=3,现将△ACB绕点A逆时针旋转50°得到△AC1B1,则阴影部分的面积为______. ‎ 第14题图 ‎       第18题图 ‎15.(2016·泸州)若二次函数y=2x2-4x-1的图象与x轴交于A(x1,0),B(x2,0)两点,则+的值为________.‎ ‎16.(2016·孝感)《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,问勾中容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步.”该问题的答案是________步.‎ ‎17.已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c时,都有y1<y2<y3,则实数m的取值范围是________.‎ ‎18.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE,CB于点P,Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是△ACQ的外心,‎ 其中结论正确的是________(只需填写序号).‎ 三、解答题(共66分)‎ ‎19.(6分)用适当的方法解下列一元二次方程: ‎ ‎(1)2x2+4x-1=0; (2)(y+2)2-(3y-1)2=0.‎ ‎20.(7分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.‎ ‎(1)求证:△BDE≌△BCE;‎ ‎(2)试判断四边形ABED的形状,并说明理由.‎ ‎21.(7分)(2016·呼伦贝尔)有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).‎ ‎(1)写出点Q所有可能的坐标;‎ ‎(2)求点Q在x轴上的概率.‎ ‎22.(8分)已知关于x的一元二次方程x2-(2k+1)x+k2+2k=0有两个实数根x1,x2.‎ ‎(1)求实数k的取值范围;‎ ‎(2)是否存在实数k,使得x1·x2-x12-x22≥0成立?若存在,请求出k的值;若不存在,请说明理由.‎ ‎23.(8分)用长为‎32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.‎ ‎(1)求y关于x的函数解析式;‎ ‎(2)当x为何值时,围成的养鸡场面积为60平方米?‎ ‎(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由. ‎ ‎24.(9分)如图,AB是⊙O的直径,=,连接ED,BD,延长AE交BD的延长线于点M,过点D作⊙O的切线交AB的延长线于点C.‎ ‎(1)若OA=CD=2,求阴影部分的面积;‎ ‎(2)求证:DE=DM.‎ ‎25.(10分)(2016·云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y与x的函数关系图象.‎ ‎(1)求y与x的函数解析式;‎ ‎(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.‎ ‎26.(11分)(2016·泰安)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E,B. ‎ ‎(1)求二次函数y=ax2+bx+c的解析式;‎ ‎(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;‎ ‎(3)若点M在抛物线上,点N在其对称轴上,使得以A,E,N,M为顶点的四边形是平行四边形,且AE为其一边,求点M,N的坐标.‎ 期末检测题(一)‎ ‎1.C 2.B 3.B 4.D 5.D 6.A 7.C 8.C 9.A ‎10.C 11. 12.9 13. 14.π 15.-4‎ ‎16.6 17.m>- 点拨:方法一:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴-<2.5,解得m>-2.5.方法二:当a<b<c时,都有y1<y2<y3,即∴ ‎∴∵a,b,c恰好是一个三角形的三边长,a<b<c,∴a+b<b+c,∴m>-(a+b),∵a,b,c为正整数,∴a,b,c的最小值分别为2,3,4,∴m>-(a+b)≥-(2+3)=-,∴m>-,故答案为m>-. 18.②③ 19.(1)x1=-1+,x2=-1-.(2)y1=-,y2=. 20.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥BC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵∴△BDE≌△BCE.(2)四边形ABED为菱形.理由如下:由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BE=ED,∴四边形ABED为菱形. 21.(1)画树状图为:‎ 共有6种等可能的结果数,它们为(0,-2),(0,0),(0,1),(-2,-2),(-2,0),(-2,1).(2)点Q在x轴上的结果数为2,所以点Q在x轴上的概率为=. 22.(1)∵原方程有两个实数根,∴[-(2k+1)]2-4(k2+2k)≥0,∴k≤,∴当k≤时,原方程有两个实数根.(2)不存在实数k,使得x1·x2-x12-x22≥0成立.理由如下:假设存在实数k,使得x1·x2-x12-x22≥0成立.∵x1,x2是原方程的两根,∴x1+x2=2k+1,x1·x2=k2+2k.由x1·x2-x12-x22≥0,得3x1·x2-(x1+x2)2≥0,∴3(k2+2k)-(2k+1)2≥0,整理得-(k-1)2≥0,∴只有当k=1时,不等式才能成立.又∵由(1)知k≤,∴不存在实数k,使得x1·x2-x12-x22≥0成立. 23.(1)设围成的矩形一边长为x米,则矩形的另一边长为(16-x)米.依题意得y=x(16-x)=-x2+16x,故y关于x的函数解析式是y=-x2+16x.(2)由(1)知,y=-x2+16x.当y=60时,-x2+16x=60,解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为‎60平方米.(3)不能围成面积为‎70平方米的养鸡场.理由如下:由(1)知,y=-x2+16x.当y=70时,-x2+16x=70,即x2-16x+70=0,因为Δ=(-16)2-4×1×70=-24<0,所以该方程无实数解.故不能围成面积为‎70平方米的养鸡场.‎ ‎24.‎ ‎(1)如图,连接OD,∵CD是⊙O切线,∴OD⊥CD,∵OA=CD=2,OA=OD,∴OD=CD=2,∴△OCD为等腰直角三角形,∴∠DOC=∠C=45°,∴S阴影=S△OCD-S扇形OBD=×2×2-=4-π.(2)证明:如图,连接AD,∵AB是⊙O直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,∴△AMD≌△ABD,∴DM=BD,∴DE=DM. 25.(1)设y与x的函数解析式为y=kx+b,根据题意,得解得∴y与x的函数解析式为y=-2x+340(20≤x≤40).(2)由已知得W=(x-20)(-2x+340)=-2x2+380x-6 800=-2(x-95)2+11 250,∵-2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为-2(40-95)2+11 250=5 200(元). 26.‎ ‎(1)设抛物线解析式为y=a(x-2)2+9,∵抛物线与y轴交于点A(0,5),∴‎4a+9=5,∴a=-1,y=-(x-2)2+9=-x2+4x+5.(2)当y=0时,-x2+4x+5=0,∴x1=-1,x2=5,∴E(-1,0),B(5,0),设直线AB的解析式为y=mx+n,∵A(0,5),B(5,0),∴m=-1,n=5,∴直线AB的解析式为y=-x+5.设P(x,-x2+4x+5),∴D(x,-x+5),∴PD=-x2+4x+5+x-5=-x2+5x,∵AC=4,∴S四边形APCD=×AC×PD=2(-x2+5x)=-2x2+10x,∴当x=-=时,∴即点P(,)时,S四边形APCD最大=.(3)如图,过点M作MH垂直于对称轴,垂足为点H,∵四边形AENM是平行四边形,∴MN∥AE,MN=AE,∴△HMN≌△AOE,∴HM=OE=1.∴M点的横坐标为x=3或x=1.当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,∴M点的坐标为M1(1,8)或M2(3,8),∵A(0,5),E(-1,0),∴直线AE解析式为y=5x+5,∵MN∥AE,∴可设直线MN的解析式为y=5x+b,∵点N在抛物线对称轴x=2上,∴N(2,10+b),∵AE2=OA2+OE2=26,∵MN=AE,∴MN2=AE2,∵M点的坐标为M1(1,8)或M2(3,8),∴点M1,M2关于抛物线对称轴x=2对称,∵点N在抛物线对称轴上,∴M1N=M2N,∴MN2=(1-2)2+[8-(10+b)]2=1+(b+2)2=26,∴b=3或b=-7,∴10+b=13或10+b=3.∴当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3).‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料