2018年中考模拟卷(一)
时间:120分钟 满分:120分
题号
一
二
三
总分
得分
一、选择题(每小题3分,共30分)
1.下列实数中,无理数为( )
A.0.2 B. C. D.2
2.“2014年至2016年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”,将数据3万亿美元用科学记数法表示为( )
A.3×1014美元 B.3×1013美元
C.3×1012美元 D.3×1011美元
3.如图,下面的几何体由三个大小相同的小立方块组成,则它的左视图是( )
4.函数y=中自变量x的取值范围是( )
A.x≥-3 B.x≠5 C.x≥-3或x≠5 D.x≥-3且x≠5
5.一元二次方程x2-2x=0的解是( )
A.0 B.2 C.0或-2 D.0或2
6.下列说法中,正确的有( )
①等腰三角形两边长为2和5,则它的周长是9或12;②无理数-在-2和-1之间;③六边形的内角和是外角和的2倍;④若a>b,则a-b>0.它的逆命题是假命题;⑤北偏东30°与南偏东50°的两条射线组成的角为80°.
A.1个 B.2个 C.3个 D.4个
7.某交警在一个路口统计的某时段来往车辆的车速情况如表:
车速(km/h)
48
49
50
51
52
车辆数(辆)
5
4
8
2
1
则上述车速的中位数和众数分别是( )
A.50,8 B.49,50 C.50,50 D.49,8
8.正比例函数y1=k1x与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为-2,当y1<y2时,x的取值范围是( )
A.x<-2或x>2 B.x<-2或0<x<2
C.-2<x<0或0<x<2 D.-2<x<0或x>2
9.已知关于x的分式方程-1=的解是正数,则m的取值范围是( )
A.m<4且m≠3 B.m<4
C.m≤4且m≠3 D.m>5且m≠6
10.农夫将苹果树种在正方形的果园内,为了保护苹果树不受风吹,他在苹果树的周围种上针叶树.在下图里,你可以看到农夫所种植苹果树的列数(n)和苹果树数量及针叶树数量的规律:当n为某一个数值时,苹果树数量会等于针叶树数量,则n为( )
A.6 B.8 C.12 D.16
二、填空题(每小题3分,共24分)
11.分解因式m2+2mn+n2-1=____________.
12.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为________________.
13.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为________.
第13题图 第14题图 第15题图
14.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(6,0),点C的坐标是(1,4),则点B的坐标是________.
15.如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为弧DD′,则图中阴影部分的面积是________.
16.对于任意实数m、n,定义一种新运算m※n=mn-m-n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5-3-5+3=10.请根据上述定义可知6<2※x<7的解集为________.
17.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是________.
第17题图 第18题图
18.如图,AB=4,射线BQ和AB互相垂直,点D是AB上的一个动点,点E在射线BQ上,BE=DB,作EF⊥DE,并截取EF=DE,连接AF并延长交射线BQ于点C.设BE=x,
BC=y,则y关于x的函数解析式为______________.
三、解答题(共66分)
19.(6分)计算:-22-+|1-4sin60°|+.
20.(8分)如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于 点F,E为BC的中点,求DE的长.
21.(8分)如图,函数y1=-x+4的图象与函数y2=(x>0)的图象交于A(a,1)、B(1,b)两点.
(1)求函数y2的表达式;
(2)观察图象,比较当x>0时,y1与y2的大小.
22.(10分)如图,在△ABC中,AB=AC,O在AB上,以O为圆心,OB长为半径的圆与BC交于点D,DE⊥AC于E.
(1)求证:DE是⊙O的切线;
(2)若AC与⊙O相切于F,AB=5,sinA=,求⊙O的半径.
23.(10分)2017年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号的展厅共6个,小雨一家计划利用两天时间参观其中两个展厅.第一天从6个展厅中随机选择一个,第二天从余下的5个展厅中再随机选择一个,且每个展厅被选中的机会均等.
(1)第一天,1号展厅没有被选中的概率是________;
(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.
24.(12分)某核桃种植基地计划种植A、B两种优质核桃共30亩,已知这两种核桃的年产量分别为800千克/亩、1000千克/亩,收购价格分别是4.2元/千克、4元/千克.
(1)若该基地收获两种核桃的年总产量为25800千克,则A、B两种核桃各种植了多少亩?
(2)设该基地种植A种核桃a亩,全部收购后,总收入为w元,求出w与a之间的函数关系式.若要求种植A种核桃的面积不少于B种核桃的一半,那么种植A、B两种核桃各多少亩时,该种植基地的总收入最多?最多是多少元?
25.(12分)如图①是一台放置在水平桌面上的笔记本电脑,将其侧面抽象成如图②所示的几何图形,若显示屏所在面的侧边AO与键盘所在面的侧边BO长均为24cm,点P为眼睛所在位置,D为AO的中点,连接PD,当PD⊥AO时,称点P为“最佳视角点”,作PC⊥BC,垂足C在OB的延长线上,且BC=12cm.
(1)当PA=45cm时,求PC的长;
(2)若∠AOC=120°时,“最佳视角点”P在直线PC上的位置会发生什么变化?此时PC的长是多少?请通过计算说明(结果精确到0.1cm,可用科学计算器,参考数据:≈1.414,≈1.732).
参考答案与解析
1.C 2.C 3.C 4.D 5.D 6.B 7.C 8.B 9.A
10.B 解析:第1个图形中苹果树的棵数是1,针叶树的棵数是8;第2个图形中苹果树的棵数是4=22,针叶树的棵数是16=8×2,第3个图形中苹果树的棵数是9=32,针叶树的棵数是24=8×3,第4个图形中苹果树的棵数是16=42,针叶树的棵数是32=8×4,…,所以,第n个图形中苹果树的棵数是n2,针叶树的棵数是8n.∵苹果树的棵数与针叶树的棵数相等,∴n2=8n,解得n1=0(舍去),n2=8.故选B.
11.(m+n-1)( m+n+1) 12.y=a(1+x)2 13.110°
14.(7,4) 15.- 16.5