四川南充高中2018届高三数学1月检测试题(文科带答案)
加入VIP免费下载

本文件来自资料包: 《四川南充高中2018届高三数学1月检测试题(文科带答案)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
www.ks5u.com 四川南充高中2018年高三1月检测考试 文科数学试卷 第Ⅰ卷 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.‎ ‎1.复数( )‎ A. B. C. D.‎ ‎2.已知,,则( )‎ A. B. C. D.‎ ‎3.下表是我国某城市在2017年1月份至10月份各月最低温与最高温的数据一览表.‎ 已知该城市的各月最低温与最高温具有相关关系,根据该一览表,则下列结论错误的是( )‎ A.最低温与最高温为正相关 ‎ B.每月最高温和最低温的平均值在前8个月逐月增加 ‎ C.月温差(最高温减最低温)的最大值出现在1月 ‎ D.1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大 ‎4.已知等差数列的前项和为,公差,,且,则( )‎ A.-13 B.-14 C.-15 D.-16‎ ‎5.已知点在双曲线上,分别为双曲线的左、右顶点,离心率为,若为等腰三角形,且顶角为,则( )‎ A. B.2 C.3 D.‎ ‎6.设满足约束条件,则的取值范围是( )‎ A. B. C. D.‎ ‎7.某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )‎ A. B. ‎ C. D.‎ ‎8.将曲线上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线,则在上的单调递增区间是( )‎ A. B. ‎ C. D.‎ ‎9.如图,是正方体的棱上的一点(不与端点重合),平面,则( )‎ A. B. C. D.‎ ‎10.执行如图所示的程序框图,若输入的,则输出的( )‎ A.7 B.10 C.13 D.16‎ ‎11.函数的部分图像大致是( )‎ A. B. C. D.‎ ‎12.已知函数,若有且只有两个整数,使得,且,则的取值范围是( )‎ A. B. C. D.‎ 第Ⅱ卷 二、填空题(每题5分,满分20分,将答案填在答题纸上)‎ ‎13.设平面向量与向量互相垂直,且,若,则 .‎ ‎14.已知各项均为正数的等比数列的公比为,,,则 .‎ ‎15.若,,则 .‎ ‎16.已知抛物线的焦点为,是抛物线上的两个动点,若,则的最大值为 .‎ 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) ‎ ‎17.在中,内角的对边分别为,已知,‎ ‎.‎ ‎(1)求大小;‎ ‎(2)求的值.‎ ‎18.唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制的100件工艺品测得其重量(单位:)数据,将数据分组如下表:‎ ‎(1)在答题卡上完成频率分布表;‎ ‎(2)以表中的频率作为概率,估计重量落在中的概率及重量小于2.45的概率是多少?‎ ‎(3)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是2.25作为代表.据此,估计这100个数据的平均值.‎ ‎19.如图,四边形是矩形,,,,平面,.‎ ‎(1)证明:平面平面;‎ ‎(2)设与相交于点,点在棱上,且,求三棱锥的体积.‎ ‎20.已知双曲线的焦点是椭圆的顶点,为椭圆的 左焦点且椭圆经过点.‎ ‎(1)求椭圆的方程;‎ ‎(2)过椭圆的右顶点作斜率为的直线交椭圆于另一点,连结并延长交椭圆于点,当的面积取得最大值时,求的面积.‎ ‎21.已知函数.‎ ‎(1)若曲线在处的切线与轴垂直,求的最大值;‎ ‎(2)若对任意都有,求的取值范围.‎ 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.‎ ‎22.在平面直角坐标系中,曲线的参数方程为(为参数),曲线的参数方程为(为参数).‎ ‎(1)将的方程化为普通方程,并说明它们分别表示什么曲线;‎ ‎(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.若上的点对应的参数为,点在上,点为的中点,求点到直线距离的最小值.‎ ‎23.选修4-5:不等式选讲 已知.‎ ‎(1)证明:;‎ ‎(2)若,求实数的取值范围.‎ 试卷答案 一、选择题 ‎1-5:ACBAD 6-10:ACBDD 11、12:DC 二、填空题 ‎13.5 14.2 15. 16.(或)‎ 三、解答题 ‎17.解:(1)因为,,‎ 所以,所以,即.‎ ‎(2)由余弦定理得.‎ 又,所以,即.‎ 消去得,方程两边同时除以得,则.‎ ‎18.解:(1)‎ ‎(2)重量落在中的概率约为,‎ 或,重量小于的概率约为.‎ ‎(3)这100个数据的平均值约为 ‎.‎ ‎19.(1)证明:因为四边形是矩形,,,,‎ 所以,.又,‎ 所以,.因为,‎ 所以.又平面,所以,而,‎ 所以平面.又平面,所以平面 平面.‎ ‎(2)解:因为,,所以.‎ 又,,所以,为棱的中点,到平面的距离等于.‎ 由(1)知,所以,所以,‎ 所以.‎ ‎20.解:(1)由已知,得,所以的方程为.‎ ‎(2)由已知结合(1)得,,,‎ 所以设直线,联立得,‎ 得,‎ ‎,‎ 当且仅当,即时,的面积取得最大值,所以,此时.‎ 所以直线,联立,解得,‎ 所以,点到直线的距离为,‎ 所以.‎ ‎21.解:(1)由,得,,‎ 令,则,可知函数在上单调递增,‎ 在上单调递减,所以.‎ ‎(2)由题可知函数在上单调递减,‎ 从而在上恒成立.‎ 令,则,‎ 当时,,所以函数在上单调递减,则.‎ 当时,令,得.所以函数在上单调递增,在上单调递减,则,即,‎ 通过求函数的导数可知它在上单调递增,故.‎ 综上,,即的取值范围是.‎ ‎22:解:(1)的普通方程为,它表示以为圆心,为半径的圆,‎ 的普通方程为,它表示中心在原点,焦点在轴上的椭圆.‎ ‎(2)由已知得,设,则,‎ 直线,点到直线的距离,‎ 所以,即到的距离的最小值为.‎ ‎23.(1)证明:因为,‎ 而,所以.‎ ‎(2)解:因为,‎ 所以或,解得,所以的取值范围是.‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料