平面向量(有解析2018年高考理科数学易错点)
加入VIP免费下载

本文件来自资料包: 《平面向量(有解析2018年高考理科数学易错点)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎1.【2017课标3,理12】在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若= +,则+的最大值为 A.3 B.2 C. D.2‎ ‎【答案】A ‎【解析】如图所示,建立平面直角坐标系 设 ‎ 根据等面积公式可得圆的半径是,即圆的方程是 ‎ ‎,若满足 即 , ,所以,设 ,即,点在圆上,所以圆心到直线的距离,即 ,解得,所以的最大值是3,即的最大值是3,故选A。‎ ‎2.【2017北京,理6】设m,n为非零向量,则“存在负数,使得”是“”的 ‎(A)充分而不必要条件 (B)必要而不充分条件 ‎(C)充分必要条件 (D)既不充分也不必要条件 ‎【答案】A ‎【解析】若,使,即两向量反向,夹角是,那么T,若,那么两向量的夹角为 ,并不一定反向,即不一定存在负数,使得,所以是充分不必要条件,故选A.‎ ‎3.【2017课标II,理12】已知是边长为2的等边三角形,P为平面ABC内一点,则的最小是( )‎ A. B. C. D.‎ ‎【答案】B ‎4.【2017课标1,理13】已知向量a,b的夹角为60°,|a|=2,|b|=1,则| a +2 b |= .‎ ‎【答案】‎ ‎【解析】利用如下图形,可以判断出的模长是以2为边长的菱形对角线的长度,‎ 所以.‎ ‎5.【2017天津,理13】在中,,,.若,,且,则的值为___________.‎ ‎【答案】 ‎ ‎【解析】 ,则 ‎.‎ ‎6.【2017山东,理12】已知是互相垂直的单位向量,若与的夹角为,则实数的值是 .‎ ‎【答案】‎ ‎【解析】,‎ ‎,‎ ‎,‎ ‎,解得:.‎ ‎7.【2017浙江,15】已知向量a,b满足则的最小值是________,最大值是_______.‎ ‎【答案】4,‎ ‎【解析】设向量的夹角为,由余弦定理有: ,‎ ‎,则:‎ ‎,‎ 令,则,‎ 据此可得: ,‎ 即的最小值是4,最大值是.‎ ‎8.【2017浙江,10】如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记,,,则 A. B. C. D.‎ ‎【答案】C ‎【解析】因为, , ,所以,故选C。‎ ‎9.【2017江苏,12】如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为,且tan=7,与的夹角为45°.若, 则 ▲ .‎ ‎ ‎ A ‎ C ‎ B O ‎(第12题) ‎ ‎【答案】3 ‎ ‎【解析】由可得, ,根据向量的分解,‎ 易得,即,即,即得,‎ 所以.‎ ‎10.【2017江苏,16】 已知向量 ‎(1)若a∥b,求x的值;‎ ‎(2)记,求的最大值和最小值以及对应的的值.‎ ‎【答案】(1)(2)时,取得最大值,为3; 时,取得最小值,为.‎ ‎(2).‎ 因为,所以,‎ 从而.‎ 于是,当,即时, 取到最大值3;‎ 当,即时, 取到最小值.‎ 易错起源1、平面向量的线性运算 例1、(1)设0

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料