等差数列与等比数列(含解析2018年高考理科数学易错点)
加入VIP免费下载

本文件来自资料包: 《等差数列与等比数列(含解析2018年高考理科数学易错点)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎1.【2017课标1,理4】记为等差数列的前项和.若,,则的公差为 A.1 B.2 C.4 D.8‎ ‎【答案】C ‎【解析】因为,即,则,即,解得,故选C.‎ ‎2.【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )‎ A.1盏 B.3盏 C.5盏 D.9盏 ‎【答案】B ‎3.【2017课标1,理12】几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是 A.440 B.330 C.220 D.110‎ ‎【答案】A ‎【解析】由题意得,数列如下:‎ 则该数列的前项和为 ‎,‎ 要使,有,此时,所以是第组等比数列的部分和,设,‎ 所以,则,此时,‎ 所以对应满足条件的最小整数,故选A.‎ ‎4. 【2016高考新课标1卷】已知等差数列前9项的和为27,,则 ( )‎ ‎(A)100 (B)99 (C)98 (D)97‎ ‎【答案】C ‎【解析】由已知,所以故选C.‎ ‎5.【2016高考浙江理数】如图,点列{An},{Bn}分别在某锐角的两边上,且,,‎ ‎().若( )‎ A.是等差数列 B.是等差数列 C.是等差数列 D.是等差数列 ‎【答案】A ‎6.【2016年高考北京理数】已知为等差数列,为其前项和,若,,则_______..‎ ‎【答案】6‎ ‎【解析】∵是等差数列,∴,,,,‎ ‎∴,故填:6.‎ ‎7.【2016高考江苏卷】已知是等差数列,是其前项和.若,则的值是 ▲ .‎ ‎【答案】‎ ‎【解析】由得,因此 ‎5、【2016高考新课标1卷】设等比数列满足a1+a3=10,a2+a4=5,则a‎1a2 …an的最大值为 .‎ ‎【答案】64‎ ‎【解析】设等比数列的公比为,由得,解得.所以,于是当或时,‎ 取得最大值.‎ ‎8.【2016高考江苏卷】(本小题满分16分)‎ 记.对数列和的子集T,若,定义;若,定义.例如:时,.现设是公比为3的等比数列,且当时,.‎ ‎(1)求数列的通项公式;‎ ‎(2)对任意正整数,若,求证:;‎ ‎(3)设,求证:.‎ ‎【答案】(1)(2)详见解析(3)详见解析 ‎(2)因为,,‎ 所以.‎ 因此,.‎ ‎(3)下面分三种情况证明.‎ ‎①若是的子集,则.‎ ‎②若是的子集,则.‎ ‎③若不是的子集,且不是的子集.‎ 令,则,,.‎ 于是,,进而由,得.‎ 设是中的最大数,为中的最大数,则.‎ 由(2)知,,于是,所以,即.‎ 又,故,‎ 从而,‎ 故,所以,‎ 即.‎ 综合①②③得,. ‎ 易错起源1、等差数列、等比数列的运算 例1、(1)已知数列{an}中,a3=,a7=,且是等差数列,则a5等于(  )‎ A.B.C.D. ‎(2)已知等比数列{an}的各项都为正数,其前n项和为Sn,且a1+a7=9, a4=2,则S8等于(  )‎ A.15(1+) B.15 C.15 D.15(1+)或15(1+)‎ 答案 (1)B (2)D 解析 (1)设等差数列的公差为d,则=+4d,∴=+4d,解得d=2.‎ ‎∴=+2d=10,解得a5=.‎ ‎(2)由a4=2,得a1a7=a=8,故a1,a7是方程x2-9x+8=0的两根,所以或因为等比数列{an ‎}的各项都为正数,所以公比q>0.当时q==,所以S8==15(1+);‎ 当时,q==,所以S8==15.故选D.‎ ‎【变式探究】(1)已知{an}是等差数列,公差d不为零.若a2,a3,a7成等比数列,且2a1+a2=1,则a1=________,d=________.‎ ‎(2)已知数列{an}是各项均为正数的等比数列,a1+a2=1,a3+a4=2,则log2=________.‎ 答案 (1) -1 (2)1006‎ ‎ ‎ ‎(2)在等比数列中,(a1+a2)q2=a3+a4,‎ 即q2=2,所以a2013+a2014+a2015+a2016‎ ‎=(a1+a2+a3+a4)q2012=3×21006,‎ 所以log2=1006.‎ ‎【名师点睛】‎ 在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量.‎ ‎【锦囊妙计,战胜自我】‎ ‎1.通项公式 等差数列:an=a1+(n-1)d;‎ 等比数列:an=a1·qn-1.‎ ‎2.求和公式 等差数列:Sn==na1+d;‎ 等比数列:Sn==(q≠1).‎ ‎3.性质 若m+n=p+q,‎ 在等差数列中am+an=ap+aq;‎ 在等比数列中am·an=ap·aq.‎ 易错起源2、等差数列、等比数列的判定与证明 例2、已知数列{an}的前n项和为Sn (n∈N*),且满足an+Sn=2n+1.‎ ‎(1)求证:数列{an-2}是等比数列,并求数列{an}的通项公式;‎ ‎(2)求证:++…+

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料