天津红桥区2018年中考数学二模试题(附解析)
加入VIP免费下载

本文件来自资料包: 《天津红桥区2018年中考数学二模试题(附解析)》 共有 1 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
‎2018年天津市红桥区中考数学二模试卷 一、选择题(每小题3分,共36分)‎ ‎1.计算 15÷(﹣3)的结果等于(  )‎ A.﹣5 B.5 C.﹣ D.‎ ‎2.sin45°的值等于(  )‎ A. B.1 C. D.‎ ‎3.如图图形中,可以看作中心对称图形的是(  )‎ A. B. C. D.‎ ‎4.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为(  )‎ A.172×102 B.17.2×103 C.1.72×104 D.0.172×105‎ ‎5.如图是一个由5个相同的正方体组成的立体图形,它的主视图是(  )‎ A. B. ‎ C. D.‎ ‎6.计算﹣的结果是(  )‎ A.1 B.﹣1 C.1﹣x D.‎ ‎7.方程2x2﹣x﹣3=0的两个根为(  )‎ A.x1=,x2=﹣1 B.x1=﹣,x2=1 ‎ C.x1=,x2=﹣3 D.x1=﹣,x2=3‎ ‎8.已知a=(+1)2,估计a的值在(  )‎ A.3 和4之间 B.4和5之间 C.5和6之间 D.6和7之间 ‎9.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为(  )‎ A. B.2 C.2 D.4‎ ‎10.已知点P(m,n),为是反比例函数y=﹣图象上一点,当﹣3≤n<﹣1时,m的取值范围是(  )‎ A.1≤m<3 B.﹣3≤m<﹣1 C.1<m≤3 D.﹣3<m≤﹣1‎ ‎11.如图,在△ABC中,∠ACB=90°,点D为AB的中点,AC=3,cosA=,将△DAC沿着CD折叠后,点A落在点E处,则BE的长为(  )‎ A.5 B.4 C.7 D.5‎ ‎12.若关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),则a的取值范围是(  )‎ A.a<3 B.a>3 C.a<﹣3 D.a>﹣3‎ ‎ ‎ 二、填空题(每小题3分,共18分)‎ ‎13.计算a5÷a2的结果等于   .‎ ‎14.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是   .‎ ‎15.若一次函数y=﹣x+b(b为常数)的图象经过点(1,2),则b的值为   .‎ ‎16.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于   .‎ ‎17.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为   .‎ ‎18.如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.‎ ‎(I)计算△ABC的边AC的长为   .‎ ‎(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的   (不要求证明).‎ ‎ ‎ 三、解答题(66分)‎ ‎19.(8分)解不等式组 请结合题意填空,完成本题的解答.‎ ‎(I)解不等式(1),得   ;‎ ‎(II)解不等式(2),得   ;‎ ‎(III)把不等式①和②的解集在数轴上表示出来:‎ ‎(IV)原不等式组的解集为   .‎ ‎20.(8分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:‎ ‎(I)本次随机抽样调查的学生人数为   ,图①中的m的值为   ;‎ ‎(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;‎ ‎(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.[‎ ‎21.(10分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.‎ ‎(I)如图①,若∠F=50°,求∠BGF的大小;‎ ‎(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.‎ ‎22.(10分)五一期间,小红到郊野公园游玩,在景点P处测得景点B位于南偏东45°方向,然后沿北偏东37°方向走200m米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与景点B之间的距离.(结果保留整数)参考数据:sin37≈0.60,cos37°=0.80,tan37°≈0.75‎ ‎2‎ ‎3.(10分)为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.若用户的月用水量不超过15吨,每吨收水费4元;用户的月用水量超过15吨,超过15吨的部分,按每吨6元收费.‎ ‎(I)根据题意,填写下表:‎ 月用水量(吨/户)‎ ‎4‎ ‎10‎ ‎16‎ ‎……‎ 应收水费(元/户)‎ ‎   ‎ ‎40‎ ‎   ‎ ‎……‎ ‎(II)设一户居民的月用水量为x吨,应收水费y元,写出y关于x的函数关系式;‎ ‎(III)已知用户甲上个月比用户乙多用水6吨,两户共收水费126元,求他们上个月分别用水多少吨?‎ ‎24.(10分)在平面直角坐标系中,O为原点,点A(8,0)、点B(0,4),点C、D分别是边OA、AB的中点.将△ACD绕点A顺时针方向旋转,得△AC′D′,记旋转角为α.‎ ‎(I)如图①,连接BD′,当BD′∥OA时,求点D′的坐标;‎ ‎(II)如图②,当α=60°时,求点C′的坐标;‎ ‎(III)当点B,D′,C′共线时,求点C的坐标(直接写出结果即可).‎ ‎25.(10分)如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A,过点P(1,m)作直线PA⊥‎ x轴于点M,交抛物线于点B.记点B关于抛物线对称轴的对称点为C(点B、C不重合),连接CB、CP.‎ ‎(I)当m=3时,求点A的坐标及BC的长;‎ ‎(II)当m>1时,连接CA,若CA⊥CP,求m的值;‎ ‎(III)过点P作PE⊥PC,且PE=PC,当点E落在坐标轴上时,求m的值,并确定相对应的点E的坐标.‎ ‎ ‎ ‎参考答案与试题解析 一、选择题 ‎1.【解答】解:15÷(﹣3)=﹣(15÷3)=﹣5,‎ 故选:A.‎ ‎2.【解答】解:sin45°=,‎ 故选:D.‎ ‎3.【解答】解:A、不是中心对称图形,故此选项不合题意;‎ B、不是中心对称图形,故此选项不合题意;‎ C、不是中心对称图形,故此选项不合题意;‎ D、是中心对称图形,故此选项符合题意;‎ 故选:D.‎ ‎4.【解答】解:将17200用科学记数法表示为1.72×104.‎ 故选:C.‎ ‎5.【解答】解:这个几何体的主视图为:.‎ 故选:D.‎ ‎6.【解答】解:原式=‎ ‎=‎ ‎=‎ ‎=﹣1,‎ 故选:B.‎ ‎7.【解答】解:(2x﹣3)(x+1)=0,‎ ‎2x﹣3=0或x+1=0,‎ 所以x1=,x2=﹣1.‎ 故选:A.‎ ‎8.【解答】解:a=×(7+1+2)=4+,‎ ‎∵2<<3,‎ ‎∴6<4+<7,‎ ‎∴a的值在6和7之间,‎ 故选:D.‎ ‎9.【解答】解:∵圆内接正六边形的边长是2,‎ ‎∴圆的半径为2.‎ 那么直径为4.‎ 圆的内接正方形的对角线长为圆的直径,等于4.‎ ‎∴圆的内接正方形的边长是2.‎ 故选:B.‎ ‎10.【解答】解:∵点P(m,n),为是反比例函数y=﹣图象上一点,‎ ‎∴当﹣3≤n<﹣1时,‎ ‎∴n=﹣3时,m=1,n=﹣1时,m=3,‎ 则m的取值范围是:1≤m<3.‎ 故选:A.‎ ‎11.【解答】解:连接AE,‎ ‎∵AC=3,cos∠CAB=,‎ ‎∴AB=3AC=9,‎ 由勾股定理得,BC==6,‎ ‎∠ACB=90°,点D为AB的中点,‎ ‎∴CD=AB=,‎ S△ABC=×3×6=9,‎ ‎∵点D为AB的中点,‎ ‎∴S△ACD=S△ABC=,‎ 由翻转变换的性质可知,S四边形ACED=9,AE⊥CD,‎ 则×CD×AE=9,‎ 解得,AE=4,‎ ‎∴AF=2,‎ 由勾股定理得,DF==,‎ ‎∵AF=FE,AD=DB,‎ ‎∴BE=2DF=7,‎ 故选:C.‎ ‎12.【解答】解:依题意得:‎ 当x=0时,函数y=ax2+2x﹣5=﹣5;‎ 当x=1时,函数y=a+2﹣5=a﹣3.‎ 又关于x的一元二次方程ax2+2x﹣5=0的两根中有且仅有一根在0和1之间(不含0和1),‎ 所以当x=1时,函数图象必在x轴的上方,‎ 所以y=a﹣3>0,‎ 即a>3.‎ 故选:B.‎ ‎ ‎ 二、填空题(每小题3分,共18分)‎ ‎13.【解答】解:a5÷a2=a3.‎ 故答案为:a3.‎ ‎14.【解答】解:∵袋子中共有5个球,有2个黑球,‎ ‎∴从袋子中随机摸出一个球,它是黑球的概率为;‎ 故答案为:.‎ ‎15.【解答】解:把点(1,2)代入解析式y=﹣x+b,可得:2=﹣1+b,‎ 解得:b=3,‎ 故答案为:3‎ ‎16.【解答】解:∵四边形ABCD是平行四边形,‎ ‎∴BC∥AD、BC=AD,‎ 而CE=2EB,‎ ‎∴△AFD∽△CFE,且它们的相似比为2:1,‎ ‎∴S△AFD:S△EFC=()2,‎ 而S△AFD=9,‎ ‎∴S△EFC=4.‎ 故答案为:4.‎ ‎17.【解答】解:y=x2﹣x+3=(x﹣)2+,‎ ‎∴N点坐标为:(,),‎ 令x=0,则y=3,‎ ‎∴M点的坐标是(0,3).‎ ‎∵平移该抛物线,使点M平移后的对应点M′与点N重合,‎ ‎∴抛物线向下平移个单位长度,再向右平移个单位长度即可,‎ ‎∴平移后的解析式为:y=(x﹣1)2+.‎ 故答案是:y=(x﹣1)2+.‎ ‎18.【解答】解:(1)AC==.‎ 故答案为.‎ ‎(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.‎ 故答案为:作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.‎ 三、解答题(66分)‎ ‎19.【解答】解:(I)解不等式(1),得x≥;‎ ‎(II)解不等式(2),得x≤2;[‎ ‎(III)把不等式①和②的解集在数轴上表示出来:‎ ‎(IV)原不等式组的解集为:≤x≤2.‎ 故答案为:x≥、x≤2、≤x≤2.‎ ‎20.【解答】解:(I)本次随机抽样调查的学生人数为18÷12%=150人,m=100﹣(12+10+18+22+24)=14,‎ 故答案为:150、14;‎ ‎(II)众数为3天、中位数为第75、76个数据的平均数,即平均数为=4天,‎ 平均数为=3.5天;‎ ‎(III)估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生有2500×(18%+10%)=700人.‎ ‎21.【解答】解:(I)如图①,连接OB,‎ ‎∵BF为⊙O的切线,‎ ‎∴OB⊥BF,‎ ‎∴∠OBF=90°,‎ ‎∵OA⊥CD,‎ ‎∴∠OED=90°,‎ ‎∴∠AOB=180°﹣∠F=180°﹣50°=130°,‎ ‎∵OA=OB,‎ ‎∴∠1=∠A=(180°﹣130°)=25°,‎ ‎∴∠2=90°﹣∠1=65°,‎ ‎∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;‎ ‎(II)如图②,连接OB,BO的延长线交AC于H,‎ ‎∵BF为⊙O的切线,‎ ‎∴OB⊥BF,‎ ‎∵AC∥BF,‎ ‎∴BH⊥AC,‎ 与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,‎ ‎∵OA=OB,‎ ‎∴∠OBA=∠OAB=(180°﹣144°)=18°,‎ ‎∵∠AOB=∠OHA+∠OAH,‎ ‎∴∠OAH=144°﹣90°=54°,‎ ‎∴∠BAC=∠OAH+∠OAB=54°+18°=72°,‎ ‎∴∠BDG=∠BAC=72°.‎ ‎22.【解答】解:如图,作PC⊥AB于C,则∠ACP=∠BCP=90°,‎ 由题意,可得∠A=37°,∠B=45°,PA=200m.‎ 在Rt△ACP中,∵∠ACP=90°,∠A=37°,‎ ‎∴AC=AP•cosA=200×0.80=160,PC=AP•sinA=200×0.60=120.‎ 在Rt△BPC中,∵∠BCP=90°,∠B=45°,‎ ‎∴BC=PC=120.‎ ‎∴AB=AC+BC=160+120=280(米).‎ 答:景点A与B之间的距离大约为280米.‎ ‎23.【解答】解:(Ⅰ)当月用水量为4吨时,应收水费=4×4=16元;‎ 当月用水量为16吨时,应收水费=15×4+1×6=66元;‎ 故答案为:16;66;‎ ‎(Ⅱ)当x≤15时,y=4x;‎ 当x>15时,y=15×4+(x﹣15)×6=6x﹣30;‎ ‎(Ⅲ)设居民甲上月用水量为X吨,居民乙用水(X﹣6)吨.‎ 由题意:X﹣6<15且X>15时,4(X﹣6)+15×4+(X﹣15)×6=126[来 X=18,‎ ‎∴居民甲上月用水量为18吨,居民乙用水12吨.‎ ‎24.【解答】解:(I)如图①,‎ ‎∵A(8,0),B(0,4),‎ ‎∴OB=4,OA=8,‎ ‎∵AC=OC=AC′=4,‎ ‎∴当OB∥AC′,四边形OBC′A是平行四边形,‎ ‎∵∠AOB=90°,‎ ‎∴四边形OBC′A是矩形,‎ ‎∴∠AC′B=90°,∵∠AC′D′=90°,‎ ‎∴B、C′、D′共线,‎ ‎∴BD′∥OA,‎ ‎∵AC=CO, BD=AD,‎ ‎∴CD=C′D′=OB=2,‎ ‎∴D′(10,4),‎ 根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.‎ 综上所述,满足条件的点D坐标(10,4)或(6,4).‎ ‎(II)如图②,当α=60°时,作C′K⊥AC于K.‎ 在Rt△AC′K中,∵∠KAC′=60°,AC′=4,‎ ‎∴AK=2,C′K=2,‎ ‎∴OK=6,‎ ‎∴C′(6,2).‎ ‎(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).‎ ‎②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,‎ ‎∴OF=FC′,设OF=FC′=x,‎ 在Rt△ABC′中,BC′==8,‎ 在RT△BOF中,OB=4,OF=x,BF=8﹣x,‎ ‎∴(8﹣x)2=42+x2,‎ 解得x=3,‎ ‎∴OF=FC′=3,BF=5,作C′K⊥OA于K,‎ ‎∵OB∥KC′,‎ ‎∴==,‎ ‎∴==,‎ ‎∴KC′=,KF=,‎ ‎∴OK=,‎ ‎∴C′(,﹣).‎ ‎25.【解答】解:(I)当m=3时,抛物线解析式为y=﹣x2+6x,‎ 当y=0时,﹣x2+6x=0,解得x1=0,x2=6,则A(6,0),‎ 抛物线的对称轴为直线x=3,‎ ‎∵P(1,3),‎ ‎∴B(1,5),‎ ‎∵点B关于抛物线对称轴的对称点为C ‎∴C(5,5),‎ ‎∴BC=5﹣1=4;‎ ‎(II)当y=0时,﹣x2+2mx=0,解得x1=0,x2=2m,则A(2m,0),‎ B(1,2m﹣1),‎ ‎∵点B关于抛物线对称轴的对称点为C,而抛物线的对称轴为直线x=m,‎ ‎∴C(2m﹣1,2m﹣1),‎ ‎∵PC⊥PA,‎ ‎∴PC2+AC2=PA2,‎ ‎∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,‎ 整理得2m2﹣5m+3=0,解得m1=1,m2=,‎ 即m的值为;‎ ‎(III)如图,‎ ‎∵PE⊥PC,PE=PC,‎ ‎∴△PME≌△CBP,‎ ‎∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,‎ 而P(1,m)‎ ‎∴2m﹣2=m,解得m=2,‎ ‎∴ME=m﹣1=1,‎ ‎∴E(2,0);‎ 作PH⊥y轴于H,如图,‎ 易得△PHE′≌△PBC,‎ ‎∴PH=PB=m﹣1,HE′=BC=2m﹣2,‎ 而P(1,m)‎ ‎∴m﹣1=1,解得m=2,‎ ‎∴HE′=2m﹣2=2,‎ ‎∴E′(0,4);‎ 综上所述,m的值为2,点E的坐标为(2,0)或(0,4).‎

资料: 10.8万

进入主页

人气:

10000+的老师在这里下载备课资料