2016-2017学年七年级数学下段测试题(台安县有答案和解析)
加入VIP免费下载

本文件来自资料包: 《2016-2017学年七年级数学下段测试题(台安县有答案和解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2016-2017学年辽宁省鞍山市台安县七年级(下)段测数学试卷 一、选择题 ‎1.(2分)如图,已知直线a、b被直线c所截,那么∠1的同位角是(  )‎ A.∠2 B.∠3 C.∠4 D.∠5‎ ‎2.(2分)如图,AB⊥CD于O,EF过点O,则∠1与∠2的关系是(  )‎ A.相等 B.互余 C.互补 D.互为对顶角 ‎3.(2分)如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在(  )‎ A.A点 B.B点 C.C点 D.D点 ‎4.(2分)如图所示,有下列条件:①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°,其中,能判断a∥b的条件有(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A.1个 B.2个 C.3个 D.4个 ‎5.(2分)如图所示的四个三角形中,能由三角形ABC经过平移得到的是(  )‎ A. B. C. D.‎ ‎6.(2分)直线a、b、c在同一平面内,在下述四种说法中,正确的个数为(  )‎ ‎(1)如果a⊥b,b⊥c,那么a∥c;‎ ‎(2)如果a∥b,b∥c,c∥d,那么a∥d;‎ ‎(3)如果a∥b,b⊥c,那么a⊥c;‎ ‎(4)如果a与b相交,b与c相交,那么a与c相交.‎ A.1个 B.2个 C.3个 D.4个 ‎7.(2分)下列各式中,正确的是(  )‎ A. B. C. D.‎ ‎8.(2分)如果a的立方根等于a,那么a的值为(  )‎ A.0 B.0或1 C.0或﹣1 D.0或±1‎ ‎ ‎ 二、填空题 ‎9.(2分)如图,h与b相交于O点,若∠1=30°,则∠2的度数是   ,∠3的度数是   .‎ ‎10.(2分)如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是   .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎11.(2分)把命题“在平面内,垂直于同一条直线的两条直线互相平行”改写成一般形式   .‎ ‎12.(2分)如图,梯子的各条横档互相平行,若∠1=110°,则∠2的度数为   .‎ ‎13.(2分)如图,把∠AOB沿着直线MN平移一定的距离,得到∠CPD,若∠AOM=40°,∠DPN=40°,则∠AOB=   .‎ ‎14.(2分)如图,从①∠1=∠2;②∠C=∠D;③∠A=∠E,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题有   个.‎ ‎15.(2分)若两个连续整数x、y满足x<+1<y,则x+y的值是   .‎ ‎16.(2分)若a>0,则   0(填“>”或“<”).‎ ‎ ‎ 三、解答题 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎17.(7分)已知25x2﹣144=0,且x>0,求2的平方根.‎ ‎18.(7分)已知一个正方体的棱长是5cm,再做一个正方体,使它的体积是第一个正方体体积的2倍,求所做的正方体的棱长(精确到0.1cm).‎ ‎19.(8分)把△ABC向右平移3格,再向上平移2格,画出所得到的△A′B′C,并说出线段AB与A′B′的大小及位置关系.‎ ‎20.(8分)如图,已知直线AB、CD被直线EF所截,且∠AGE=46°,∠EHD=134°,请判断AB与CD平行吗?说明理由.‎ ‎21.(8分)读句画图:如图,直线CD与直线AB相交于C,‎ 根据下列语句画图:‎ ‎(1)过点P作PQ∥CD,交AB于点Q;‎ ‎(2)过点P作PR⊥CD,垂足为R;‎ ‎(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.‎ ‎22.(8分)如图,完成下列推理过程.‎ 已知:E为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.‎ 试说明:AC∥DF.‎ 解:∵∠1=∠2(已知)‎ ‎∠1=∠3,∠2=∠4(   )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴∠3=∠4(   )‎ ‎∴   ∥   (   )‎ ‎∴∠C=∠ABD(   )‎ 又∵∠C=∠D(已知)‎ ‎∴∠D=   (等量代换)‎ ‎∴AC∥DF(   )‎ ‎23.(10分)如图,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.‎ ‎(1)判断CD与AB的位置关系;‎ ‎(2)BE与DF平行吗?为什么?‎ ‎24.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.‎ ‎(1)AE与FC会平行吗?说明理由;‎ ‎(2)AD与BC的位置关系如何?为什么?‎ ‎(3)BC平分∠DBE吗?为什么.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2016-2017学年辽宁省鞍山市台安县七年级(下)段测数学试卷 参考答案与试题解析 一、选择题 ‎1.(2分)如图,已知直线a、b被直线c所截,那么∠1的同位角是(  )‎ A.∠2 B.∠3 C.∠4 D.∠5‎ ‎【解答】解:已知直线a、b被直线c所截,那么∠1的同位角是∠2,‎ 故选:A.‎ ‎ ‎ ‎2.(2分)如图,AB⊥CD于O,EF过点O,则∠1与∠2的关系是(  )‎ A.相等 B.互余 C.互补 D.互为对顶角 ‎【解答】解:∵AB⊥CD,‎ ‎∴∠BOD=90°,‎ ‎∵∠EOF=180°,‎ ‎∴∠1+∠2=180°﹣90°=90°,‎ ‎∴∠1与∠2的关系是互余,‎ 故选:B.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎3.(2分)如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在(  )‎ A.A点 B.B点 C.C点 D.D点 ‎【解答】解:根据垂线段最短可得:应建在A处,‎ 故选:A.‎ ‎ ‎ ‎4.(2分)如图所示,有下列条件:①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°,其中,能判断a∥b的条件有(  )‎ A.1个 B.2个 C.3个 D.4个 ‎【解答】解:①∠1=∠2;由“同位角相等,两直线平行”可判断a∥b;‎ ‎②∠1=∠4;由“内错角相等,两直线平行”可判断a∥b;‎ ‎③∠1+∠3=180°;由“同旁内角互补,两直线平行”可判断a∥b;‎ ‎④∵∠1+∠5=180°,∴∠1+∠3=180°,∴由“同旁内角互补,两直线平行”可判断a∥b.‎ 故选D.‎ ‎ ‎ ‎5.(2分)如图所示的四个三角形中,能由三角形ABC经过平移得到的是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A. B. C. D.‎ ‎【解答】解:观察可得C可由△ABC经过平移得到,‎ 故选:C.‎ ‎ ‎ ‎6.(2分)直线a、b、c在同一平面内,在下述四种说法中,正确的个数为(  )‎ ‎(1)如果a⊥b,b⊥c,那么a∥c;‎ ‎(2)如果a∥b,b∥c,c∥d,那么a∥d;‎ ‎(3)如果a∥b,b⊥c,那么a⊥c;‎ ‎(4)如果a与b相交,b与c相交,那么a与c相交.‎ A.1个 B.2个 C.3个 D.4个 ‎【解答】解:(1)如果a⊥b,b⊥c,那么a∥c,正确;‎ ‎(2)如果a∥b,b∥c,c∥d,那么a∥d,正确;‎ ‎(3)如果a∥b,b⊥c,那么a⊥c,正确;‎ ‎(4)如果a与b相交,b与c相交,那么a与c相交或平行,故本小题错误.‎ 综上所述,正确的个数是3个.‎ 故选:C.‎ ‎ ‎ ‎7.(2分)下列各式中,正确的是(  )‎ A. B. C. D.‎ ‎【解答】解:A、=|﹣3|=3;故A错误;‎ B、=﹣|3|=﹣3;故B正确;‎ C、=|±3|=3;故C错误;‎ D、=|3|=3;故D错误.‎ 故选:B.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎8.(2分)如果a的立方根等于a,那么a的值为(  )‎ A.0 B.0或1 C.0或﹣1 D.0或±1‎ ‎【解答】解:1的立方根是1,﹣1的立方根是﹣1,0的立方根是0.‎ 故选:D.‎ ‎ ‎ 二、填空题 ‎9.(2分)如图,h与b相交于O点,若∠1=30°,则∠2的度数是 150° ,∠3的度数是 30° .‎ ‎【解答】解:由邻补角可知:∠2=180°﹣∠1=150°,‎ ‎∠3=∠1=30°‎ 故答案为:150°,30°‎ ‎ ‎ ‎10.(2分)如图所示,用两个相同的三角形按照如图方式作平行线,能解释其中道理的定理是 内错角相等,两直线平行 .‎ ‎【解答】解:∵∠PAB=∠ACD,‎ ‎∴CD∥AP(内错角相等,两直线平行).‎ ‎ ‎ ‎11.(2分)把命题“在平面内,垂直于同一条直线的两条直线互相平行”改写成一般形式 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行 .‎ ‎【解答】解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.‎ 故答案为在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.‎ ‎ ‎ ‎12.(2分)如图,梯子的各条横档互相平行,若∠1=110°,则∠2的度数为 70° .‎ ‎【解答】解:∵∠1=110°,‎ ‎∴∠ABD=70°,‎ ‎∵AB∥DE,‎ ‎∴∠ABD=∠2=70°.‎ ‎ ‎ ‎13.(2分)如图,把∠AOB沿着直线MN平移一定的距离,得到∠CPD,若∠AOM=40°,∠DPN=40°,则∠AOB= 100° .‎ ‎【解答】解:∵∠AOB沿着MN的方向平移一定距离后得∠CPD,‎ ‎∴BO∥DP,‎ ‎∴∠BON=∠DPN=40°,‎ ‎∵∠AOM+∠AOB+∠BON=180°,‎ ‎∴∠AOB=180°﹣40°﹣40°=100°.‎ 故答案为:100°‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎14.(2分)如图,从①∠1=∠2;②∠C=∠D;③∠A=∠E,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题有 3 个.‎ ‎【解答】解:如图所示:当①∠1=∠2,‎ ‎∵∠1=∠3,‎ 则∠3=∠2,‎ 故DB∥EC,‎ 则∠D=∠4,‎ 当②∠C=∠D,‎ 故∠4=∠C,‎ 则DF∥AC,‎ 可得:∠A=∠F,‎ 即⇒③;‎ 当①∠1=∠2,‎ 则∠3=∠2,‎ 故DB∥EC,‎ 则∠D=∠4,‎ 当③∠A=∠F,‎ 故DF∥AC,‎ 则∠4=∠C,故可得:∠C=∠D,‎ 即⇒②;‎ 当③∠A=∠F,‎ 故DF∥AC,‎ 则∠4=∠C,‎ 当②∠C=∠D,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 则∠4=∠D,‎ 故DB∥EC,‎ 则∠2=∠3,‎ 可得:∠1=∠2,‎ 即⇒①,‎ 故正确的有3个.‎ 故答案为:3.‎ ‎ ‎ ‎15.(2分)若两个连续整数x、y满足x<+1<y,则x+y的值是 7 .‎ ‎【解答】解:∵,‎ ‎∴,‎ ‎∵x<+1<y,‎ ‎∴x=3,y=4,‎ ‎∴x+y=3+4=7.‎ 故答案为:7.‎ ‎ ‎ ‎16.(2分)若a>0,则 < 0(填“>”或“<”).‎ ‎【解答】解:∵a>0,‎ ‎∴<0;‎ 故答案为:<.‎ ‎ ‎ 三、解答题 ‎17.(7分)已知25x2﹣144=0,且x>0,求2的平方根.‎ ‎【解答】解:由25x2﹣144=0,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 得x=±,‎ ‎∵x>0,‎ ‎∴x=.‎ ‎∴2‎ ‎=2‎ ‎=2×5=10.‎ ‎∴2的平方根是.‎ ‎ ‎ ‎18.(7分)已知一个正方体的棱长是5cm,再做一个正方体,使它的体积是第一个正方体体积的2倍,求所做的正方体的棱长(精确到0.1cm).‎ ‎【解答】解:设正方形的棱长为xcm,‎ 则x3=53×2,‎ x=5×≈6.3,‎ 答:所做的正方体的棱长为6.3cm.‎ ‎ ‎ ‎19.(8分)把△ABC向右平移3格,再向上平移2格,画出所得到的△A′B′C,并说出线段AB与A′B′的大小及位置关系.‎ ‎【解答】解:如图,△A′B′C为所作,线段AB与A′B′平行且相等.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎20.(8分)如图,已知直线AB、CD被直线EF所截,且∠AGE=46°,∠EHD=134°,请判断AB与CD平行吗?说明理由.‎ ‎【解答】解:AB∥CD.‎ 理由:∵∠AGE=46°,‎ ‎∴∠BGF=∠AGE=46°.‎ ‎∵∠EHD=134°,‎ ‎∴∠BGF+∠EHD=46°+134°=180°,‎ ‎∴AB∥CD.‎ ‎ ‎ ‎21.(8分)读句画图:如图,直线CD与直线AB相交于C,‎ 根据下列语句画图:‎ ‎(1)过点P作PQ∥CD,交AB于点Q;‎ ‎(2)过点P作PR⊥CD,垂足为R;‎ ‎(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.‎ ‎【解答】解:(1)(2)如图所示;‎ ‎(3)∠PQC=60°‎ ‎∵PQ∥CD ‎∴∠DCB+∠PQC=180°‎ ‎∵∠DCB=120°‎ ‎∴∠PQC=180°﹣120°=60°.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎ ‎ ‎22.(8分)如图,完成下列推理过程.‎ 已知:E为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.‎ 试说明:AC∥DF.‎ 解:∵∠1=∠2(已知)‎ ‎∠1=∠3,∠2=∠4( 对顶角相等 )‎ ‎∴∠3=∠4( 等量代换 )‎ ‎∴ BD ∥ CE ( 内错角相等,两直线平行 )‎ ‎∴∠C=∠ABD( 两直线平行,同位角相等 )‎ 又∵∠C=∠D(已知)‎ ‎∴∠D= ∠ABD (等量代换)‎ ‎∴AC∥DF( 内错角相等,两直线平行 )‎ ‎【解答】解:∵∠1=∠2(已知)‎ ‎∠1=∠3,∠2=∠4(对顶角相等)‎ ‎∴∠3=∠4(等量代换)‎ ‎∴BD∥CE(内错角相等,两直线平行)‎ ‎∴∠C=∠ABD(两直线平行,同位角相等)‎ 又∵∠C=∠D(已知)‎ ‎∴∠D=∠ABD(等量代换)‎ ‎∴AC∥DF(内错角相等,两直线平行)‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 故答案为:对顶角相等,等量代换,BD,CE,内错角相等,两直线平行,两直线平行,同位角相等,∠ABD,内错角相等,两直线平行.‎ ‎ ‎ ‎23.(10分)如图,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.‎ ‎(1)判断CD与AB的位置关系;‎ ‎(2)BE与DF平行吗?为什么?‎ ‎【解答】解:(1)CD∥AB.‎ ‎∵AB⊥BD,CD⊥MN,‎ ‎∴∠CDM=∠ABD=90°,‎ ‎∴CD∥AB;‎ ‎(2)FD∥EB.‎ ‎∵∠CDM=∠ABD,∠FDC=∠EBA,‎ ‎∴∠CDM﹣∠FDC=∠ABD﹣∠EBA,‎ 即∠FDM=∠EBM,‎ ‎∴BE∥DF.‎ ‎ ‎ ‎24.(12分)如图,∠1+∠2=180°,∠A=∠C,DA平分∠BDF.‎ ‎(1)AE与FC会平行吗?说明理由;‎ ‎(2)AD与BC的位置关系如何?为什么?‎ ‎(3)BC平分∠DBE吗?为什么.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【解答】解:(1)平行.理由如下:‎ ‎∵∠1+∠2=180°,∠2+∠CDB=180°(邻补角定义),‎ ‎∴∠1=∠CDB,‎ ‎∴AE∥FC( 同位角相等两直线平行);‎ ‎(2)平行.理由如下:‎ ‎∵AE∥CF,‎ ‎∴∠C=∠CBE(两直线平行,内错角相等),‎ 又∵∠A=∠C,‎ ‎∴∠A=∠CBE,‎ ‎∴AD∥BC(同位角相等,两直线平行);‎ ‎ ‎ ‎(3)平分.理由如下:‎ ‎∵DA平分∠BDF,‎ ‎∴∠FDA=∠ADB,‎ ‎∵AE∥CF,AD∥BC,‎ ‎∴∠FDA=∠A=∠CBE,∠ADB=∠CBD,‎ ‎∴∠EBC=∠CBD,‎ ‎∴BC平分∠DBE.‎ ‎ ‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料