由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017-2018学年广东省梅州市大埔县九年级(上)期末数学试卷
一.选择题(本大题10小题,每小题3分,共30分)
1.(3分)﹣的相反数是( )
A. B. C. D.﹣
2.(3分)一组数据2,3,5,7,8的平均数是( )
A.2 B.3 C.4 D.5
3.(3分)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )
A.1×106 B.100×104 C.1×107 D.0.1×108
4.(3分)下列几何体中,其主视图为三角形的是( )
A. B. C. D.
5.(3分)下列运算正确的是( )
A.a2•a3=a6 B.(﹣a2)3=﹣a5
C.a10÷a9=a(a≠0) D.(﹣bc)4÷(﹣bc)2=﹣b2c2
6.(3分)若分式的值为零,则x的值是( )
A.1 B.﹣1 C.±1 D.2
7.(3分)若a+b=3,a2+b2=7,则ab等于( )
A.2 B.1 C.﹣2 D.﹣1
8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )
A.∠1=∠2 B.∠1=∠4
C.∠3+∠4=180° D.∠2=30°,∠4=35°
9.(3分)若关于x的一元二次方程kx2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0
10.(3分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )
A.B.
C.D.
二.填空题(本大题6小题,每小题4分,共24分)
11.(4分)分解因式:2x3﹣8x= .
12.(4分)不等式2x+1>0的解集是 .
13.(4分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 .
14.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 y2(填“>”,“<”或“=”)
15.(4分)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为 .
16.(4分)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF= .
三.解答题(一)(本大题3小题,每小题6分,共18分)
17.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.
18.(6分)解方程组:.
19.(6分)解不等式:≤.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
四.解答题(二)(本大题3小题,每小题7分,共21分)
20.(7分)已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
21.(7分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.
22.(7分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1)m= ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 ;
(4)已知该校共有1200名学生,请你估计该校约有 名学生最喜爱足球活动.
五、解答题(三)(本大题3小題,每小题9分,共27分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.(9分)已知,一次函数y=x+1的图象与反比例函数y=(k≠0)都经过点A (a,2).
(1)求a的值及反比例函数的表达式;
(2)判断点B(2,)是否在该反比例函数的图象上,请说明理由.
24.(9分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.
(1)求证:△CDE≌△CBF;
(2)当DE=时,求CG的长;
(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.
25.(9分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017-2018学年广东省梅州市大埔县九年级(上)期末数学试卷
参考答案与试题解析
一.选择题(本大题10小题,每小题3分,共30分)
1.(3分)﹣的相反数是( )
A. B. C. D.﹣
【解答】解:∵﹣与是只有符号不同的两个数,
∴﹣的相反数是.
故选C.
2.(3分)一组数据2,3,5,7,8的平均数是( )
A.2 B.3 C.4 D.5
【解答】解:数据2,3,5,7,8的平均数==5.
故选D.
3.(3分)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )
A.1×106 B.100×104 C.1×107 D.0.1×108
【解答】解:将100万用科学记数法表示为:1×106.
故选:A.
4.(3分)下列几何体中,其主视图为三角形的是( )
A. B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:A、圆柱的主视图为矩形,
∴A不符合题意;
B、正方体的主视图为正方形,
∴B不符合题意;
C、球体的主视图为圆形,
∴C不符合题意;
D、圆锥的主视图为三角形,
∴D符合题意.
故选D.
5.(3分)下列运算正确的是( )
A.a2•a3=a6 B.(﹣a2)3=﹣a5
C.a10÷a9=a(a≠0) D.(﹣bc)4÷(﹣bc)2=﹣b2c2
【解答】解:A、a2•a3=a5,故A错误;
B、(﹣a2)3=﹣a6,故B错误;
C、a10÷a9=a(a≠0),故C正确;
D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;
故选C.
6.(3分)若分式的值为零,则x的值是( )
A.1 B.﹣1 C.±1 D.2
【解答】解:∵分式的值为零,
∴|x|﹣1=0,x+1≠0,
解得:x=1.
故选:A.
7.(3分)若a+b=3,a2+b2=7,则ab等于( )
A.2 B.1 C.﹣2 D.﹣1
【解答】解:∵a+b=3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴(a+b)2=9,
∴a2+2ab+b2=9,
∵a2+b2=7,
∴7+2ab=9,
∴ab=1.
故选:B.
8.(3分)如图,直线a,b被直线c所截,下列条件能判断a∥b的是( )
A.∠1=∠2 B.∠1=∠4
C.∠3+∠4=180° D.∠2=30°,∠4=35°
【解答】解:∵∠1=∠4,
∴a∥b(同位角相等两直线平行).
故选B.
9.(3分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是( )
A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0
【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,
解得k>﹣1且k≠0.
故选B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10.(3分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是( )
A. B. C. D.
【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向鱼缸内流,这时水位高度不变,
当鱼缸水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.
故选:D.
二.填空题(本大题6小题,每小题4分,共24分)
11.(4分)分解因式:2x3﹣8x= 2x(x﹣2)(x+2) .
【解答】解:2x3﹣8x,
=2x(x2﹣4),
=2x(x+2)(x﹣2).
12.(4分)不等式2x+1>0的解集是 x>﹣ .
【解答】解:原不等式移项得,
2x>﹣1,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
系数化为1,得,
x>﹣.
故答案为x>﹣.
13.(4分)一个不透明的口袋中有6个完全相同的小球,把它们分别标号为1,2,3,4,5,6,从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是 .
【解答】解:∵共有6个完全相同的小球,其中偶数有2,4,6,共3个,
∴从中随机摸取一个小球,取出的小球标号恰好是偶数的概率是=;
故答案为:.
14.(4分)在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 < y2(填“>”,“<”或“=”)
【解答】解:∵一次函数y=x﹣1中k=1,
∴y随x值的增大而增大.
∵x1<x2,
∴y1<y2.
故答案为:<.
15.(4分)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为 0 .
【解答】解:根据题意得α+β=3,αβ=﹣4,
所以原式=a(α+β)﹣3α
=3α﹣3α
=0.
故答案为0.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
16.(4分)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF= 2 .
【解答】解:如图,作AG⊥BC于G,
∵△ABC是等边三角形,
∴∠B=60°,
∴AG=AB=2,
连接AD,则S△ABD+S△ACD=S△ABC,
∴AB•DE+AC•DF=BC•AG,
∵AB=AC=BC=4,
∴DE+DF=AG=2,
故答案为:2.
三.解答题(一)(本大题3小题,每小题6分,共18分)
17.(6分)计算:(﹣2017)0﹣sin30°++2﹣1.
【解答】解:原式=1﹣+2+
=1+2.
18.(6分)解方程组:.
【解答】解:,
①+②得到,3x=6,x=2,
把x=2代入①得到y=1,
∴.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
19.(6分)解不等式:≤.
【解答】解:去分母得:3(x﹣2)≤2(7﹣x),
去括号得:3x﹣6≤14﹣2x,
移项合并得:5x≤20,
解得:x≤4.
四.解答题(二)(本大题3小题,每小题7分,共21分)
20.(7分)已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.
【解答】证明:∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC.
∴∠BAE=∠DCF.
在△AEB和△CFD中,,
∴△AEB≌△CFD(SAS).
∴BE=DF.
21.(7分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.
【解答】解:设汽车原来的平均速度是x km/h,
根据题意得:﹣=2,
解得:x=70
经检验:x=70是原方程的解.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
答:汽车原来的平均速度70km/h.
22.(7分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.
请结合以上信息解答下列问题:
(1)m= 150 ;
(2)请补全上面的条形统计图;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为 36° ;
(4)已知该校共有1200名学生,请你估计该校约有 240 名学生最喜爱足球活动.
【解答】解:(1)m=21÷14%=150,
(2)“足球“的人数=150×20%=30人,
补全上面的条形统计图如图所示;
(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;
(4)1200×20%=240人,
答:估计该校约有240名学生最喜爱足球活动.
故答案为:150,36°,240.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
五、解答题(三)(本大题3小題,每小题9分,共27分)
23.(9分)已知,一次函数y=x+1的图象与反比例函数y=(k≠0)都经过点A (a,2).
(1)求a的值及反比例函数的表达式;
(2)判断点B(2,)是否在该反比例函数的图象上,请说明理由.
【解答】解:(1)将A(a,2)代入y=x+1中得:2=a+1,
解得:a=1,即A(1,2),
将A(1,2)代入反比例解析式中得:k=2,
则反比例解析式为y=;
(2)在函数图象上,理由如下:
将x=2代入反比例解析式得:y==,
则点B在反比例图象上.
24.(9分)如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.
(1)求证:△CDE≌△CBF;
(2)当DE=时,求CG的长;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.
【解答】解:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,
∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,
∵CF⊥CE,
∴∠ECF=90°,
∴∠3+∠2=∠ECF=90°,
∴∠1=∠3,
在△CDE和△CBF中,,
∴△CDE≌△CBF,
(2)在正方形ABCD中,AD∥BC,
∴△GBF∽△EAF,
∴,
由(1)知,△CDE≌△CBF,
∴BF=DE=,
∵正方形的边长为1,
∴AF=AB+BF=,AE=AD﹣DE=,
∴,
∴BG=,
∴CG=BC﹣BG=;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)不能,
理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,
∴AD﹣AE=BC﹣CG,
∴DE=BG,
由(1)知,△CDE≌△CBF,
∴DE=BF,CE=CF,
∴△GBF和△ECF是等腰直角三角形,
∴∠GFB=45°,∠CFE=45°,
∴∠CFA=∠GFB+∠CFE=90°,
此时点F与点B重合,点D与点E重合,与题目条件不符,
∴点E在运动过程中,四边形CEAG不能是平行四边形.
25.(9分)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线y=x+3相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:
(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),
∴,解得,
∴该抛物线对应的函数解析式为y=x2﹣x+3;
(2)①∵点P是抛物线上的动点且位于x轴下方,
∴可设P(t, t2﹣t+3)(1<t<5),
∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,
∴M(t,0),N(t, t+3),
∴PN=t+3﹣(t2﹣t+3)=﹣(t﹣)2+
联立直线CD与抛物线解析式可得,解得或,
∴C(0,3),D(7,),
分别过C、D作直线PN的直线,垂足分别为E、F,如图1,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则CE=t,DF=7﹣t,
∴S△PCD=S△PCN+S△PDN=PN•CE+PN•DF=PN= [﹣(t﹣)2+]=﹣(t﹣)2+,
∴当t=时,△PCD的面积有最大值,最大值为;
②存在.
∵∠CQN=∠PMB=90°,
∴当△CNQ与△PBM相似时,有或=两种情况,
∵CQ⊥PM,垂足为Q,
∴Q(t,3),且C(0,3),N(t, t+3),
∴CQ=t,NQ=t+3﹣3=t,
∴=,
∵P(t, t2﹣t+3),M(t,0),B(5,0),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴BM=5﹣t,PM=0﹣(t2﹣t+3)=﹣t2+t﹣3,
当时,则PM=BM,即﹣t2+t﹣3=(5﹣t),解得t=2或t=5(舍去),此时P(2,﹣);
当=时,则BM=PM,即5﹣t=(﹣t2+t﹣3),解得t=或t=5(舍去),此时P(,﹣);
综上可知存在满足条件的点P,其坐标为(2,﹣)或(,﹣).
由莲山课件提供http://www.5ykj.com/ 资源全部免费