由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017-2018学年江苏省泰州市兴化市顾庄学区九年级(上)第二次月考数学试卷
一.单选题(共10题;共30分)
1.(3分)若实数x、y满足(x+y+3)(x+y﹣1)=0,则x+y的值为( )
A.1 B.﹣3 C.3或﹣1 D.﹣3或1
2.(3分)如图OA=OB=OC且∠ACB=30°,则∠AOB的大小是( )
A.40° B.50° C.60° D.70°
3.(3分)圆锥的母线长为5cm,底面半径为4cm,则圆锥的侧面积是( )
A.15π B.20π C.25π D.30π
4.(3分)下列语句中,正确的有( )
(1)相等的圆心角所对的弧相等;
(2)平分弦的直径垂直于弦;
(3)长度相等的两条弧是等弧;
(4)圆是轴对称图形,任何一条直径都是对称轴.
A.0个 B.1个 C.2个 D.3个
5.(3分)如图,已知点A为⊙O内一点,点B、C均在圆上,∠C=30°,∠A=∠B=45°,线段OA=﹣1,则阴影部分的周长为( )
A. +2 B. +2 C. + D. +
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
6.(3分)已知一元二次方程x2+3x+2=0,下列判断正确的是( )
A.该方程无实数解
B.该方程有两个相等的实数解
C.该方程有两个不相等的实数解
D.该方程解的情况不确定
7.(3分)为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长 百分率为x,则下列方程正确的是( )
A.2500(1+x)2=1.2
B.2500(1+x)2=12000
C.2500+2500(1+x)+2500(1+x)2=1.2
D.2500+2500(1+x)+2500(1+x)2=12000
8.(3分)下列关于 x的方程:①ax2+bx+c=0;②x2+=6;③x2=0;④x=3x2⑤(x+1)(x﹣1)=x2+4x中,一元二次方程的个数是( )
A.1个 B.2个 C.3个 D.4个
9.(3分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为( )
A.10(1+x)2=36.4 B.10+10(1+x)2=36.4
C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4
10.(3分)已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=( )
A.1 B.﹣1 C.±1 D.0
二.填空题(共8题;共24分)
11.(3分)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为 .
12.(3分)如图所示,P是⊙O外一点,PA,PB分别和⊙
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.
(1)若△PDE的周长为10,则PA的长为 ;
(2)连接CA、CB,若∠P=50°,则∠BCA的度数为 度.
13.(3分)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为 .
14.(3分)半径等于12的圆中,垂直平分半径的弦长为 .
15.(3分)用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 .
16.(3分)正六边形的边长为8cm,则它的面积为 cm2.
17.(3分)若(m+1)xm(m+2﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是 .
18.(3分)用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于 .
三.解答题(共5题;共36分)
19.如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.
20.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)求线段AD所在直线的函数表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A⇒D⇒C⇒B⇒A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.
21.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.
(1)求证:AB是⊙O的切线;
(2)若BE=3,BC=7,求⊙O的半径长.
22.设a,b是方程x2+x﹣2017=0的两个实数根,求代数式a2+2a+b的值.
23.解方程:
(1)2x2+x﹣3=0(用公式法)
(2)(x﹣1)(x+3)=12.
四.综合题(10分)
24.(10分)如图,AB=AC,点O在AB上,⊙O过点B,分别与BC、AB交于D、E,过D作DF⊥AC于F.
(1)求证: DF是⊙O的切线;
(2)若AC与⊙O相切于点G,⊙O的半径为3,CF=1,求AC长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2017-2018学年江苏省泰州市兴化市顾庄学区九年级(上)第二次月考数学试卷
参考答案与试题解析
一.单选题(共10题;共30分)
1.(3分)若实数x、y满足(x+y+3)(x+y﹣1)=0,则x+y的值为( )
A.1 B.﹣3 C.3或﹣1 D.﹣3或1
【解答】解:(x+y+3)(x+y﹣1)=0,
(x+y)2+2(x+y)﹣3=0,
(x+y+3)(x+y﹣1)=0,
x+y+3=0,x+y﹣1=0,
∴x+y=﹣3,x+y=1.
故选D.
2.(3分)如图OA=OB=OC且∠ACB=30°,则∠AOB的大小是( )
A.40° B.50° C.60° D.70°
【解答】解:由OA=OB=OC,得到以O为圆心,OA长为半径的圆经过A,B及C,
∵圆周角∠ACB与圆心角∠AOB都对,且∠ACB=30°,
∴∠AOB=2∠ACB=60°.
故选C
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
3.(3分)圆锥的母线长为5cm,底面半径为4cm,则圆锥的侧面积是( )
A.15π B.20π C.25π D.30π
【解答】解:圆锥的侧面积=2π×5×4÷2=20π.
故选B.
4.(3分)下列语句中,正确的有( )
(1)相等的圆心角所对的弧相等;
(2)平分弦的直径垂直于弦;
(3)长度相等的两条弧是等弧;
(4)圆是轴对称图形,任何一条直径都是对称轴.
A.0个 B.1个 C.2个 D.3个
【解答】解:(1)在同圆或等圆中,相等的圆心角所对的弧相等,故本小题错误;
(2)平分弦的直径垂直于弦(非直径),故本小题错误;
(3)在同圆或等圆中,长度相等的两条弧是等弧,故本小题错误;
(4)每一条直径所在的直线是圆的对称轴.对称轴是直线,而直径是线段,故本小题错误.
故选A.
5.(3分)如图,已知点A为⊙O内一点,点B、C均在圆上,∠C=30°,∠A=∠B=45°,线段OA=﹣1,则阴影部分的周长为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. +2 B. +2 C. + D. +
【解答】解:延长AO交BC于点D,连接OB.
∵∠A=∠ABC=45°,
∴AD=BD,∠ADB=90°,即AD⊥BC.
∴BD=CD.
在Rt△COD中,设OD=x,
∵∠C=30°,
∴∠COD=60°,OC=2x,CD=x.
∴∠COB=120°,AD=x.
∴OA=AD﹣OD=x﹣x=(﹣1)x.
而OA=﹣1,
∴x=1,即OD=1,OC=2,BC=2CD=2.
∴阴影部分的周长为: +2=+2.
故选:A.
6.(3分)已知一元二次方程x2+3x+2=0,下列判断正确的是( )
A.该方程无实数解
B.该方程有两个相等的实数解
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
C.该方程有两个不相等的实数解
D.该方程解的情况不确定
【解答】解:∵a=1,b=3,c=2,
∴△=b2﹣4ac=32﹣4×1×2=1>0,
∴方程有两个不相等的实数根.
故选C.
7.(3分)为执行“均衡教育”政策,某县2014年投入教育经费2500万元,预计到2016年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长 百分率为x,则下列方程正确的是( )
A.2500(1+x)2=1.2
B.2500(1+x)2=12000
C.2500+2500(1+x)+2500(1+x)2=1.2
D.2500+2500(1+x)+2500(1+x)2=12000
【解答】解:设每年投入教育经费的年平均增长百分率为x,
由题意得,2500+2500×(1+x)+2500(1+x)2=12000.
故选D.
8.(3分)下列关于 x的方程:①ax2+bx+c=0;②x2+=6;③x2=0;④x=3x2⑤(x+1)(x﹣1)=x2+4x中,一元二次方程的个数是( )
A.1个 B.2个 C.3个 D.4个
【解答】解:①当a=0时,ax2+bx+c=0不是一元二次方程;②x2+=6是分式方程;③x2=0是一元二次方程;④x=3x2是一元二次方程⑤(x+1)(x﹣1)=x2+4x,整理后不含x的二次项,不是一元二次方程.
故选:B.
9.(3分)某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.10(1+x)2=36.4 B.10+10(1+x)2=36.4
C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4
【解答】解:设二、三月份的月增长率是x,依题意有
10+10(1+x)+10(1+x)2=36.4,
故选D.
10.(3分)已知关于x的一元二次方程(k﹣1)x2+3x+k2﹣1=0有一根为0,则k=( )
A.1 B.﹣1 C.±1 D.0
【解答】解:把x=0代入一元二次方程(k﹣1)x2+3x+k2﹣1=0,
得k2﹣1=0,
解得k=﹣1或1;
又k﹣1≠0,
即k≠1;
所以k=﹣1.
故选B.
二.填空题(共8题;共24分)
11.(3分)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为 9 .
【解答】解:设每个支干长出的小分支的数目是x个,
根据题意列方程得:x2+x+1=91,
解得:x=9或x=﹣10(不合题意,应舍去);
∴x=9;
故答案为:9
12.(3分)如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)若△PDE的周长为10,则PA的长为 5 ;
(2)连接CA、CB,若∠P=50°,则∠BCA的度数为 115 度.
【解答】解:(1)∵PA、PB、DE分别切⊙O于A、B、C,
∴PA=PB,DA=DC,EC=EB;
∴C△PDE=PD+DE+PE=PD+DA+EB+PE=PA+PB=10;
∴PA=PB=5;
(2)连接OA、OB、AC、BC,在⊙O上取一点F,连接AF、BF,
∵PA、PB分别切⊙O 于A、B;
∴∠PAO=∠PRO=90°
∴∠AOB=360°﹣90°﹣90°﹣50°=130°;
∴∠AFB=∠AOB=65°,
∵∠AFB+∠BCA=180°
∴∠BCA=180°﹣65°=115°;
故答案是:5,115°.
13.(3分)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为 3π .
【解答】解:L===3π.
故答案为:3π.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14.(3分)半径等于12的圆中,垂直平分半径的弦长为 12 .
【解答】解:如图,
∵OD=CD=6,
∴由勾股定理得AD=6,
∴由垂径定理得AB=12,
故答案为:12.
15.(3分)用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为 2 .
【解答】解:设这个圆锥的底面圆的半径为R,
由题意:2πR=,
解得R=2.
故答案为2.
16.(3分)正六边形的边长为8cm,则它的面积为 96 cm2.
【解答】解:如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;
∵此多边形是正六边形,
∴∠COD==60°;
∵OC=OD,
∴△COD是等边三角形,
∴OE=CE•tan60°=×=4cm,
∴S△OCD=CD•OE=×8×4=16cm2.
∴S正六边形=6S△OCD=6×16=96cm2.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
17.(3分)若(m+1)xm(m+2﹣1)+2mx﹣1=0是关于x的一元二次方程,则m的值是 ﹣2或1 .
【解答】解:根据题意得,,由(1)得,m=1或m=﹣2;
由(2)得,m≠﹣1;可见,m=1或m=﹣2均符合题意.
18.(3分)用一个圆心角为120°,半径为18cm 的扇形作一个圆锥的侧面,则这个圆锥的底面半径应等于 6cm .
【解答】解:设这个圆锥的底面半径为rcm,
根据题意得2πr=,
解得r=6.
故答案为:6cm.
三.解答题(共5题;共36分)
19.如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.
【解答】证明:∵AB=AD,OB=OD,
∴AO是线段BD的垂直平分线,
∴AE⊥BD于点E,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵OC=5,OB=3,且cos∠BOE=,
∴OE=OB•cos∠BOE=3×=,
∴BE=,
∴CE=OC﹣OE=5﹣=,
∴BC==4,
∵OB=3,OC=5,
∴OB2+BC2=32+42=52=OC2,
∴△OBC是直角三角形,∠OBC=90°,
∴CB是⊙O的切线.
20.如图所示,菱形ABCD的顶点A、B在x轴上,点A在点B的左侧,点D在y轴的正半轴上,∠BAD=60°,点A的坐标为(﹣2,0).
(1)求线段AD所在直线的函数表达式;
(2)动点P从点A出发,以每秒1个单位长度的速度,按照A⇒D⇒C⇒B⇒A的顺序在菱形的边上匀速运动一周,设运动时间为t秒、求t为何值时,以点P为圆心、以1为半径的圆与对角线AC相切.
【解答】解:(1)∵点A的坐标为(﹣2,0),∠BAD=60°,∠AOD=90°,
∴OD=OA•tan60°=,
∴点D的坐标为(0,),(1分)
设直线AD的函数表达式为y=kx+b,,
解得.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴直线AD的函数表达式为.(3分)
(2)∵四边形ABCD是菱形,
∴∠DCB=∠BAD=60°,
∴∠1=∠2=∠3=∠4=30°,
AD=DC=CB=BA=4,(5分)
如图所示:
①点P在AD上与AC相切时,
连接P1E,则P1E⊥AC,P1E=r,
∵∠1=30°,
∴AP1=2r=2,
∴t1=2.(6分)
②点P在DC上与AC相切时,
CP2=2r=2,
∴AD+DP2=6,
∴t2=6.(7分)
③点P在BC上与AC相切时,
CP3=2r=2,
∴AD+DC+CP3=10,
∴t3=10.(8分)
④点P在AB上与AC相切时,
AP4=2r=2,
∴AD+DC+CB+BP4=14,
∴t4=14,
∴当t=2、6、10、14时,以点P为圆心、以1为半径的圆与对角线AC相切.(9分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.
(1)求证:AB是⊙O的切线;
(2)若BE=3,BC=7,求⊙O的半径长.
【解答】(1)证明:连接OB、OE,如图所示:
在△ABO和△EBO中,
,
∴△ABO≌△EBO(SSS),
∴∠BAO=∠BEO,
∵⊙O与边BC切于点E,
∴OE⊥BC,
∴∠BEO=∠BAO=90°,
即AB⊥AD,
∴AB是⊙O的切线;
(2)解:∵BE=3,BC=7,
∴AB=BE=3,CE=4,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵AB⊥AD,
∴AC=,
∵OE⊥BC,
∴∠OEC=∠BAC=90°,
∠ECO=∠ACB,
∴△CEO∽△CAB,
∴,
即,
解得:OE=,
∴⊙O的半径长为
22.设a,b是方程x2+x﹣2017=0的两个实数根,求代数式a2+2a+b的值.
【解答】解:∵a,b是方程x2+x﹣2017=0的两个实数根,
∴a2+a﹣2017=0,即a2+a=2017,a+b=﹣1,
∴a2+2a+b=a2+a+a+b=2017﹣1=2016.
23.解方程:
(1)2x2+x﹣3=0(用公式法)
(2)(x﹣1)(x+3)=12.
【解答】解:(1)a=2,b=1,c=﹣3,
△=b2﹣4ac=1﹣4×2×(﹣3)=25>0,
x==,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
x1=1,x2=﹣;
(2)方程化简,得
x2+2x﹣15=0,
因式分解,得
(x+5)(x﹣3)=0,
于是,得
x+5=0或x﹣3=0,
解得x1=﹣5,x2=3.
四.综合题(10分)
24.(10分)如图,AB=AC,点O在AB上,⊙O过点B,分别与BC、AB交于D、E,过D作DF⊥AC于F.
(1)求证:DF是⊙O的切线;
(2)若AC与⊙O相切于点G,⊙O的半径为3,CF=1,求AC长.
【解答】(1)证明:连接OD,
∵AB=AC,
∴∠B=∠C,
∵OB=OD,
∴∠B=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∵DF⊥AC,
∴OD⊥DF,
则DF为圆O的切线;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)解:连接OG,
∵AC与圆O相切,
∴OG⊥AC,
∴∠OGF=∠GFD=∠ODF=90°,且OG=OD,
∴四边形ODFG为边长为3的正方形,
设AB=AC=x,则有AG=x﹣3﹣1=x﹣4,AO=x﹣3,
在Rt△AOG中,利用勾股定理得:AO2=AG2+OG2,即(x﹣3)2=(x﹣4)2+32,
解得:x=8,
则AC=8.
由莲山课件提供http://www.5ykj.com/ 资源全部免费