由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年四川省宜宾市中考数学模拟试卷(二)
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)﹣的相反数是( )
A.5 B. C.﹣ D.﹣5
2.(3分)已知空气的单位体积质量是0.001 239g/cm3,则用科学记数法表示该数为( )
A.1.239×10﹣3 g/cm3 B.1.239×10﹣2 g/cm3
C.0.123 9×10﹣2 g/cm3 D.12.39×10﹣4 g/cm3
3.(3分)如图,立体图形的俯视图是( )
A. B. C. D.
4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为( )
A.π B.π C.π D.π
5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.40° B.36° C.50° D.45°
6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A. B. C.5 D.4
7.(3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是( )
A.﹣1 B.2 C.﹣7 D.0
8.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是( )
A. B. C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
D.
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)因式分解:9a3b﹣ab= .
10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1= .
11.(3分)已知一组数据:3,3,4,5,5,则它的方差为 .
12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组 .
13.(3分)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是 .
14.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则ba的值是 .
15.(3分)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是 .
16.(3分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有 .
三、解答题(本大题共8个题,共72分)
17.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
(2)先化简,再求值:÷(2+),其中a=.
18.(6分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.
19.(8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).
(1)四个年级被调查人数的中位数是多少?
(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.
20.(8分)某商城销售A,B两种自行车.A型自行车售价为2 100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
(1)求每辆A,B两种自行车的进价分别是多少?
(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)
22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=,且OC=4,求BD的长.
24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年四川省宜宾市中考数学模拟试卷(二)
参考答案与试题解析
一、选择题(本大题共8小题,每小题3分,共24分)
1.(3分)﹣的相反数是( )
A.5 B. C.﹣ D.﹣5
【解答】解:﹣的相反数是,
故选B.
2.(3分)已知空气的单位体积质量是0.001 239g/cm3,则用科学记数法表示该数为( )
A.1.239×10﹣3 g/cm3 B.1.239×10﹣2 g/cm3
C.0.123 9×10﹣2 g/cm3 D.12.39×10﹣4 g/cm3
【解答】解:0.001 239=1.239×10﹣3,
故选:A.
3.(3分)如图,立体图形的俯视图是( )
A. B. C. D.
【解答】解:如图所示的立体图形的俯视图是C.
故选:C.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
4.(3分)如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为( )
A.π B.π C.π D.π
【解答】解:∵∠OCA=50°,OA=OC,
∴∠A=50°,
∴∠BOC=100°,
∵AB=4,
∴BO=2,
∴的长为: =π.
故选:B.
5.(3分)如图,在平行四边形ABCD中,E是边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F,若∠B=52°,∠DAE=20°,则∠FED′的度数为( )
A.40° B.36° C.50° D.45°
【解答】解:∵四边形ABCD是平行四边形,
∴∠D=∠B=52°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
∴∠FED′=108°﹣72°=36°;
故选:B.
6.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A. B. C.5 D.4
【解答】解:∵四边形ABCD是菱形,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=,
∴,
∴DH=,
故选A.
7.(3分)使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是( )
A.﹣1 B.2 C.﹣7 D.0
【解答】解:∵关于x的不等式组有解,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴1﹣2m>m﹣2,
解得m<1,
由得x=,
∵分式方程有非负整数解,
∴x=是非负整数,
∵m<1,
∴m=﹣5,﹣2,
∴﹣5﹣2=﹣7,
故选C.
8.(3分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是( )
A. B. C. D.
【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),
当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
4),
图象为:
故选A
二、填空题(本大题共8小题,每小题3分,共24分)
9.(3分)因式分解:9a3b﹣ab= ab(3a+1)(3a﹣1) .
【解答】解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).
故答案为:ab(3a+1)(3a﹣1)
10.(3分)如图,直线a∥b,∠P=75°,∠2=30°,则∠1= 45° .
【解答】解:过P作PM∥直线a,
∵直线a∥b,
∴直线a∥b∥PM,
∵∠2=30°,
∴∠EPM=∠2=30°,
又∵∠EPF=75°,
∴∠FPM=45°,
∴∠1=∠FPM=45°,
故答案为:45°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
11.(3分)已知一组数据:3,3,4,5,5,则它的方差为 .
【解答】解:这组数据的平均数是:(3+3+4+5+5)÷5=4,
则这组数据的方差为: [(3﹣4)2+(3﹣4)2+(4﹣4)2+(5﹣4)2+(5﹣4)2]=.
故答案为:
12.(3分)今年“五一”节,A、B两人到商场购物,A购3件甲商品和2件乙商品共支付16元,B购5件甲商品和3件乙商品共支付25元,求一件甲商品和一件乙商品各售多少元.设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组 .
【解答】解:设甲商品售价x元/件,乙商品售价y元/件,则可列出方程组:
.
故答案为:.
13.(3分)如图,在Rt△ABC中,∠A=30°,BC=2,以直角边AC为直径作⊙O交AB于点D,则图中阴影部分的面积是 ﹣π .
【解答】解:如图,连接OD、CD.
∵AC是直径,
∴∠ADC=90°,
∵∠A=30°,
∴∠ACD=90°﹣∠A=60°,
∵OC=OD,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴△OCD是等边三角形,
∵BC是切线.
∴∠ACB=90°,∵BC=2,
∴AB=4,AC=6,
∴S阴=S△ABC﹣S△ACD﹣(S扇形OCD﹣S△OCD)
=×6×2﹣×3×3﹣(﹣×32)
=﹣π.
故答案为:﹣π.
14.(3分)已知x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,且x1+x2=﹣2,x1•x2=1,则ba的值是 .
【解答】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,
∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,
解得a=2,b=﹣,
∴ba=(﹣)2=.
故答案为:.
15.(3分)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是 2 .
【解答】解:联立两函数解析式成方程组,得:,
解得:.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴当x≤﹣1时,y=max{x+3,﹣x+1}=﹣x+1≥2;当x>﹣1时,y=max{x+3,﹣x+1}=x+3>2.
∴函数y=max{x+3,﹣x+1}最小值为2.
故答案为:2.
16.(3分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有 ①②③④ .
【解答】解:①∵四边形ABCD为正方形,EF∥AD,
∴EF=AD=CD,∠ACD=45°,∠GFC=90°,
∴△CFG为等腰直角三角形,
∴GF=FC,
∵EG=EF﹣GF,DF=CD﹣FC,
∴EG=DF,故①正确;
②∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,,
∴△EHF≌△DHC(SAS),
∴∠HEF=∠HDC,
∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;
③∵△CFG为等腰直角三角形,H为CG的中点,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴FH=CH,∠GFH=∠GFC=45°=∠HCD,
在△EHF和△DHC中,,
∴△EHF≌△DHC(SAS),故③正确;
④∵=,
∴AE=2BE,
∵△CFG为等腰直角三角形,H为CG的中点,
∴FH=GH,∠FHG=90°,
∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,
在△EGH和△DFH中,,
∴△EGH≌△DFH(SAS),
∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,
∴△EHD为等腰直角三角形,
过H点作HM垂直于CD于M点,如图所示:
设HM=x,则DM=5x,DH=x,CD=6x,
则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,
∴3S△EDH=13S△DHC,故④正确;
故答案为:①②③④.
三、解答题(本大题共8个题,共72分)
17.(10分)(1)计算:|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+;
(2)先化简,再求值:÷(2+),其中a=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)|﹣2|﹣(π﹣2015)0+()﹣2﹣2sin60°+
=2﹣1+4﹣2×+2
=2﹣1+4﹣+2
=5+;
(2)÷(2+)
=
=
=,
当a=时,原式==﹣1.
18.(6分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为E、F.求证:BF=CE.
【解答】证明:根据题意,知CE⊥AF,BF⊥AF,
∴∠CED=∠BFD=90°,
又∵AD是边BC上的中线,
∴BD=DC;
在Rt△BDF和Rt△CDE中,
∠BDF=∠CDE(对顶角相等),BD=CD,∠CED=∠BFD,
∴△BDF≌△CDE(AAS),
∴BF=CE(全等三角形的对应边相等).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
19.(8分)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).
(1)四个年级被调查人数的中位数是多少?
(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?
(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.
【解答】解:(1)四个年级被抽出的人数由小到大排列为30,45,55,70,
∴中位数为50;
(2)根据题意得:3000×(1﹣25%)=2250人,
则该校帮助父母做家务的学生大约有2250人;
(3)画树状图,如图所示:
所有等可能的情况有12种,其中恰好是甲与乙的情况有2种,
则P==.
20.(8分)某商城销售A,B两种自行车.A型自行车售价为2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
100元/辆,B型自行车售价为1 750元/辆,每辆A型自行车的进价比每辆B型自行车的进价多400元,商城用80 000元购进A型自行车的数量与用64 000元购进B型自行车的数量相等.
(1)求每辆A,B两种自行车的进价分别是多少?
(2)现在商城准备一次购进这两种自行车共100辆,设购进A型自行车m辆,这100辆自行车的销售总利润为y元,要求购进B型自行车数量不超过A型自行车数量的2倍,总利润不低于13 000元,求获利最大的方案以及最大利润.
【解答】解:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,
根据题意,得=,
解得x=1600,
经检验,x=1600是原方程的解,
x+400=1 600+400=2 000,
答:每辆A型自行车的进价为2 000元,每辆B型自行车的进价为1 600元;
(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,
根据题意,得,
解得:33≤m≤40,
∵m为正整数,
∴m=34,35,36,37,38,39,40.
∵y=﹣50m+15000,k=﹣50<0,
∴y随x的增大而减小,∴当m=34时,y有最大值,
最大值为:﹣50×34+15000=13300(元).
答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.(8分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)
【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.
则DE=BF=CH=10m,
在Rt△ADF中,AF=AB﹣BF=70m,∠ADF=45°,
∴DF=AF=70m.
在Rt△CDE中,DE=10m,∠DCE=30°,
∴CE===10(m),
∴BC=BE﹣CE=(70﹣10)m.
答:障碍物B,C两点间的距离为(70﹣10)m.
22.(10分)如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=的图象都经过点A(2,﹣2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,
解得:k=﹣1,
∴正比例函数的解析式为:y=﹣x,
将点A(2,﹣2)代入y=,得:﹣2=,
解得:m=﹣4;
∴反比例函数的解析式为:y=﹣;
(2)直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,
则点B的坐标为(0,3),
联立两函数解析式,解得:或,
∴第四象限内的交点C的坐标为(4,﹣1),
∵OA∥BC,
∴S△ABC=S△OBC=×BO×xC=×3×4=6.
23.(10分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若tan∠BAD=,且OC=4,求BD的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)连结OB,则OA=OB.如图1,
∵OP⊥AB,
∴AC=BC,
∴OP是AB的垂直平分线,
∴PA=PB.
在△PAO和△PBO中,
∵,
∴△PAO≌△PBO(SSS),
∴∠PBO=∠PAO.
∵PB为⊙O的切线,B为切点,
∴∠PBO=90°,
∴∠PAO=90°,即PA⊥OA,
∴PA是⊙O的切线;
(2)连结BE.如图2,
∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,
∴AC=6,则BC=6.
在Rt△APO中,
∵AC⊥OP,
∴△PAC∽△AOC,
∴AC2=OC•PC,解得PC=9,
∴OP=PC+OC=13.
在Rt△PBC中,由勾股定理,得PB==3,
∵AC=BC,OA=OE,即OC为△ABE的中位线.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴OC=BE,OC∥BE,
∴BE=2OC=8.
∵BE∥OP,
∴△DBE∽△DPO,
∴=,即=,
解得BD=.
24.(12分)如图,已知抛物线y=+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;
(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)将A(0,1),B(﹣9,10)代入函数解析式,
得,
解得,
抛物线的解析式y=+2x+1;(2分)
(2)∵AC∥x轴,A(0,1),
∴x2+2x+1=1,解得x1=﹣6,x2=0(舍),即C点坐标为(﹣6,1),
∵点A(0,1),点B(﹣9,10),
∴直线AB的解析式为y=﹣x+1,设P(m, m2+2m+1),
∴E(m,﹣m+1),
∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,
∵AC⊥PE,AC=6,(4分)
∴S四边形AECP=S△AEC+S△APC=AC•EF+AC•PF,
=AC•(EF+PF)=AC•EP=×6(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,
∵﹣6<m<0,
∴当m=﹣时,四边形AECP的面积最大值是,此时P(﹣,﹣);(6分)
(3)∵y=x2+2x+1=(x+3)2﹣2,
∴顶点P(﹣3,﹣2).
∴PF=2+1=3,CF=6﹣3=3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴PF=CF,PC=3,
∴∠PCF=45°,
同理可得∠EAF=45°,
∴∠PCF=∠EAF,
∵A(0,1),B(﹣9,10),
∴AB==9,
∴在直线AC上存在满足条件得点Q,设Q(t,1),
∵以C,P,Q为顶点的三角形与△ABC相似,
①当△CPQ∽△ABC时, =,
,CQ=2,(7分)
∴Q(﹣4,1);(8分)
②当△CPQ∽△ACB时,则,
∴=,CQ=9,(9分)
∴Q(3,1);
综上所述:当点P为抛物线的顶点时,在直线AC上存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,Q点的坐标为(﹣4,1)或(3,1).(10分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费