由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年安徽省蚌埠市固镇县中考数学一模试卷
一、选择题(本题共10小题,每小题4分,共40分)
1.(4分)﹣2的绝对值是( )
A.2 B.﹣2 C.±2 D.
2.(4分)下列计算正确的是( )
A.(a3)2=a5 B.a6÷a3=a2 C.(ab)2=a2b2 D.(a+b)2=a2+b2
3.(4分)支付宝与“滴滴打车联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2017年“滴滴打车账户流水总金额达到4930000000元,用科学记数法表示为( )
A.4.93×108 B.4.93×109 C.4.93×1010 D.4.93×1011
4.(4分)如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是( )
A. B. C. D.
5.(4分)不等式组的最小整数解是( )
A.1 B.2 C.3 D.4
6.(4分)如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于( )
A.130° B.140° C.150° D.160°
7.(4分)某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
成绩
45
46
47
48
49
50
人数
1
2
4
2
5
1
这此测试成绩的中位数和众数分别为( )
A.47,49 B.48,49 C.47.5,49 D.48,50
8.(4分)如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为( )
A.9 B.6 C.3 D.3
9.(4分)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是( )
A.DE=1 B.tan∠AFO=
C.AF= D.四边形AFCE的面积为
10.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.4个 B.3个 C.2个 D.1个
二、填空题(本题共4小题,每题5分,共20分)
11.(5分)分解因式:2x2+4xy+2y2= .
12.(5分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是 .
13.(5分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为 .
14.(5分)在▱ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F,若AD=11,EF=5,则AB= .
三、解答题(本题共2小题,每题8分,共16分)
15.(8分)计算:|﹣2|﹣(1+)0+﹣cos30°.
16.(8分)先化简下式,再求值:
2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.
四、(本题共2小题,每小题8分,共16分)
17.(8分)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
18.(8分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).
五、(本题共2小题,每题10分,共20分)
19.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:
(1)求这两年我市推行绿色建筑面积的年平均增长率;
(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.(10分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应扇形的圆心角为 度,并将条形统计图补充完整.
(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.
六、(本题共1小题,共12分)
21.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB= °,理由是: ;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
七、(本题共1小题,共12分)
22.(12分)九年级某班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天)
1
30
60
90
每天销售量p(件)
198
140
80
20
(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.
八、(本题共1小题,共14分)
23.(14分)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB= ,PD= .
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年安徽省蚌埠市固镇县中考数学一模试卷
参考答案与试题解析
一、选择题(本题共10小题,每小题4分,共40分)
1.(4分)﹣2的绝对值是( )
A.2 B.﹣2 C.±2 D.
【解答】解:﹣2的绝对值是:2.
故选:A.
2.(4分)下列计算正确的是( )
A.(a3)2=a5 B.a6÷a3=a2 C.(ab)2=a2b2 D.(a+b)2=a2+b2
【解答】解:A、底数不变指数相乘,故A错误;
B、底数不变指数相减,故B错误;
C、积得乘方等于每个因式分别乘方,再把所得的幂相乘,故C正确;
D、和的平方等于平方和加积的二倍,故D错误;
故选:C.
3.(4分)支付宝与“滴滴打车联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2017年“滴滴打车账户流水总金额达到4930000000元,用科学记数法表示为( )
A.4.93×108 B.4.93×109 C.4.93×1010 D.4.93×1011
【解答】解:4930000000=4.93×109.
故选:B.
4.(4分)如图,在一个长方体上放着一个小正方体,若这个组合体的俯视图如图所示,则这个组合体的左视图是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.
【解答】解:由原立体图形和俯视图中长方体和正方体的位置关系,可排除A、C、D.
故选:B.
5.(4分)不等式组的最小整数解是( )
A.1 B.2 C.3 D.4
【解答】解:,
由①得:x≥1,
由②得:x>2,
∴不等式组的解集为x>2,
则不等式组的最小整数解是3.
故选:C.
6.(4分)如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=60°,则∠2等于( )
A.130° B.140° C.150° D.160°
【解答】解:∵AB∥CD,
∴∠GEB=∠1=60°,
∵EF为∠GEB的平分线,
∴∠FEB=∠GEB=30°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠2=180°﹣∠FEB=150°.
故选:C.
7.(4分)某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:
成绩
45
46
47
48
49
50
人数
1
2
4
2
5
1
这此测试成绩的中位数和众数分别为( )
A.47,49 B.48,49 C.47.5,49 D.48,50
【解答】解:第8个数是48,所以中位数为48,
49出现的次数最多,出现了5次,所以众数为49.
故选:B.
8.(4分)如图所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,与OA交于点P,且OA2﹣AB2=18,则点P的横坐标为( )
A.9 B.6 C.3 D.3
【解答】解:设点B(a,b),
∵△OAC和△BAD都是等腰直角三角形,
∴OA=AC,AB=AD,OC=AC,AD=BD,
∵OA2﹣AB2=18,
∴2AC2﹣2AD2=18即AC2﹣AD2=9
∴(AC+AD)(AC﹣AD)=9,
∴(OC+BD)•CD=9,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴ab=9,
∴k=9,
∴反比例函数y=,
∵△OAC是等腰直角三角形,
∴直线OA的解析式为y=x,
解得或,
∴P(3,3),
故选:C.
9.(4分)如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE=,∠EAF=135°,则以下结论正确的是( )
A.DE=1 B.tan∠AFO=
C.AF= D.四边形AFCE的面积为
【解答】解:∵四边形ABCD是正方形,
∴AB=CB=CD=AD=1,AC⊥BD,∠ADO=∠ABO=45°,
∴OD=OB=OA=,∠ABF=∠ADE=135°,
在Rt△AEO中,EO===,
∴DE=,故A错误.
∵∠EAF=135°,∠BAD=90°,
∴∠BAF+∠DAE=45°,
∵∠ADO=∠DAE+∠AED=45°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠BAF=∠AED,
∴△ABF∽△EDA,
∴=,
∴=,
∴BF=,
在Rt△AOF中,AF===,故C正确,
tan∠AFO===,故B错误,
∴S四边形AECF=•AC•EF=××=,故D错误,
故选:C.
10.(4分)二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:
①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是( )
A.4个 B.3个 C.2个 D.1个
【解答】解:①
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2,
所以﹣=﹣1,
b=2a,
当x=﹣3时,y<0,
即9a﹣3b+c<0,
9a﹣6a+c<0,
3a+c<0,
∵a<0,
∴4a+c<0,
所以此选项结论正确;
②∵抛物线的对称轴是直线x=﹣1,
∴y=a﹣b+c的值最大,
即把x=m(m≠﹣1)代入得:y=am2+bm+c<a﹣b+c,
∴am2+bm<a﹣b,
m(am+b)+b<a,
所以此选项结论不正确;
③ax2+(b﹣1)x+c=0,
△=(b﹣1)2﹣4ac,
∵a<0,c>0,
∴ac<0,
∴﹣4ac>0,
∵(b﹣1)2≥0,
∴△>0,
∴关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;
④由图象得:当x>﹣1时,y随x的增大而减小,
∵当k为常数时,0≤k2≤k2+1,
∴当x=k2的值大于x=k2+1的函数值,
即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,
ak4+bk2>a(k2+1)2+b(k2+1),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以此选项结论不正确;
所以正确结论的个数是1个,
故选:D.
二、填空题(本题共4小题,每题5分,共20分)
11.(5分)分解因式:2x2+4xy+2y2= 2(x+y)2 .
【解答】解:2x2+4xy+2y2=2(x2+2xy+y2)=2(x+y)2.
故答案为:2(x+y)2.
12.(5分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是 20 .
【解答】解:根据题意得,x﹣4=0,y﹣8=0,
解得x=4,y=8,
①4是腰长时,三角形的三边分别为4、4、8,
∵4+4=8,
∴不能组成三角形,
②4是底边时,三角形的三边分别为4、8、8,
能组成三角形,周长=4+8+8=20,
所以,三角形的周长为20.
故答案为:20.
13.(5分)如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为 π﹣9, .
【解答】解:连接OA,OB,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠C=22.5°,
∴∠AOD=45°,
∵AB⊥CD,
∴∠AOB=90°,
∴OE=AB=3,OA=OB=AB=3,
∴S阴影=S扇形﹣S△AOB=﹣6×3=π﹣9,
故答案为:π﹣9.
14.(5分)在▱ABCD中,AE平分∠BAD交边BC于E,DF平分∠ADC交边BC于F,若AD=11,EF=5,则AB= 8或3 .
【解答】解:①如图1,在▱ABCD中,∵BC=AD=11,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∴AB=BE=CF=CD
∵EF=5,
∴BC=BE+CF﹣EF=2AB﹣EF=2AB﹣5=11,
∴AB=8;
②在▱ABCD中,∵BC=AD=11,BC∥AD,CD=AB,CD∥AB,
∴∠DAE=∠AEB,∠ADF=∠DFC,
∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠BAE=∠DAE,∠ADF=∠CDF,
∴∠BAE=∠AEB,∠CFD=∠CDF,
∴AB=BE,CF=CD,
∴AB=BE=CF=CD
∵EF=5,
∴BC=BE+CF=2AB+EF=2AB+5=11,
∴AB=3;
综上所述:AB的长为8或3.
故答案为:8或3.
三、解答题(本题共2小题,每题8分,共16分)
15.(8分)计算:|﹣2|﹣(1+)0+﹣cos30°.
【解答】解:原式=2﹣1+2﹣×,
=2﹣1+2﹣,
=.
16.(8分)先化简下式,再求值:
2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.
【解答】解:原式=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,
当x=,y=﹣1时,原式=﹣2=﹣1.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
四、(本题共2小题,每小题8分,共16分)
17.(8分)已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.
【解答】解:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,A2坐标(﹣2,﹣2).
18.(8分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
0.47,cos28°≈0.88,tan28°≈0.53).
【解答】解:∵AC∥ME,∴∠CAB=∠AEM,
在Rt△ABC中,∠CAB=28°,AC=9m,
∴BC=ACtan28°≈9×0.53=4.77(m),
∴BD=BC﹣CD=4.77﹣0.5=4.27(m),
在Rt△BDF中,∠BDF+∠FBD=90°,
在Rt△ABC中,∠CAB+∠FBC=90°,
∴∠BDF=∠CAB=28°,
∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),
答:坡道口的限高DF的长是3.8m.
五、(本题共2小题,每题10分,共20分)
19.(10分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:
(1)求这两年我市推行绿色建筑面积的年平均增长率;
(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?
【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,
950(1+x)2=1862,
解得,x1=0.4,x2=﹣2.4(舍去),
即这两年我市推行绿色建筑面积的年平均增长率为40%;
(2)由题意可得,
1862(1+40%)=2606.8,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵2606.8>2400,
∴2017年我市能完成计划目标,
即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.
20.(10分)中央电视台的“中国诗词大赛”节目文化品位高,内容丰富.某校初二年级模拟开展“中国诗词大赛”比赛,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成如下两幅不完整的统计图,请结合统计图中的信息,回答下列问题:
(1)扇形统计图中“优秀”所对应扇形的圆心角为 72 度,并将条形统计图补充完整.
(2)此次比赛有四名同学获得满分,分别是甲、乙、丙、丁,现从这四名同学中挑选两名同学参加学校举行的“中国诗词大赛”比赛,请用列表法或画树状图法,求出选中的两名同学恰好是甲、丁的概率.
【解答】解:(1)360°(1﹣40%﹣25%﹣15%)=72°;
故答案为:72;
全年级总人数为45÷15%=300(人),
“良好”的人数为300×40%=120(人),
将条形统计图补充完整,
如图所示:
(2)画树状图,如图所示:
共有12个可能的结果,选中的两名同学恰好是甲、丁的结果有2个,
∴P(选中的两名同学恰好是甲、丁)==.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
六、(本题共1小题,共12分)
21.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.
(1)∠ACB= 90 °,理由是: 直径所对的圆周角是直角 ;
(2)猜想△EAD的形状,并证明你的猜想;
(3)若AB=8,AD=6,求BD.
【解答】解:(1)∵AB是⊙O的直径,点C在⊙O上,
∴∠ACB=90°(直径所对的圆周角是直角)
(2)△EAD是等腰三角形.
证明:∵∠ABC的平分线与AC相交于点D,
∴∠CBD=∠ABE
∵AE是⊙O的切线,∴∠EAB=90°
∴∠AEB+∠EBA=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠EDA=∠CDB,∠CDB+∠CBD=90°,
∵∠CBE=∠ABE,
∴∠AED=∠EDA,
∴AE=AD
∴△EAD是等腰三角形.
(3)解:∵AE=AD,AD=6,
∴AE=AD=6,
∵AB=8,
∴在直角三角形AEB中,EB=10
∵∠CDB=∠E,∠CBD=∠ABE
∴△CDB∽△AEB,
∴===
∴设CB=4x,CD=3x则BD=5x,
∴CA=CD+DA=3x+6,
在直角三角形ACB中,
AC2+BC2=AB2
即:(3x+6)2+(4x)2=82,
解得:x=﹣2(舍去)或x=
∴BD=5x=
七、(本题共1小题,共12分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(12分)九年级某班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天)
1
30
60
90
每天销售量p(件)
198
140
80
20
(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.
【解答】(1)当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b
∵y=kx+b经过点(0,40)、(50,90),
∴,解得:,
∴售价y与时间x的函数关系式为y=x+40;
当50<x≤90时,y=90.
∴售价y与时间x的函数关系式为y=.
由数据信息可知每天的销售量p与时间x成一次函数关系,
设每天的销售量p与时间x的函数关系式为p=mx+n
∵p=mx+n过点(60,80)、(30,140),
∴,解得:,
∴p=﹣2x+200(0≤x≤90,且x为整数),
当0≤x≤50时,w=(y﹣30)•p=(x+40﹣30)(﹣2x+200)=﹣2x2+180x+2000;
当50<x≤90时,w=(90﹣30)(﹣2x+200)=﹣120x+12000.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
综上所示,每天的销售利润w与时间x的函数关系式是
w=.
(2)当0≤x≤50时,w=﹣2x2+180x+2000=﹣2(x﹣45)2+6050,
∵a=﹣2<0且0≤x≤50,
∴当x=45时,w取最大值,最大值为6050元.
当50<x≤90时,w=﹣120x+12000,
∵k=﹣120<0,w随x增大而减小,
∴当x=50时,w取最大值,最大值为6000元.
∵6050>6000,
∴当x=45时,w最大,最大值为6050元.
即销售第45天时,当天获得的销售利润最大,最大利润是6050元.
(3)当1≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,
解得:30≤x≤50,
50﹣30+1=21(天);
当50≤x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,
解得:50≤x≤53,
∵x为整数,
∴50≤x≤53,
53﹣50+1=4(天).
综上可知:21+4﹣1=24(天),
故该商品在销售过程中,共有24天每天的销售利润不低于5600元.
八、(本题共1小题,共14分)
23.(14分)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)直接用含t的代数式分别表示:QB= 8﹣2t ,PD= t .
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.
【解答】解:(1)根据题意得:CQ=2t,PA=t,
∴QB=8﹣2t,
∵在Rt△ABC中,∠C=90°,AC=6,BC=8,PD∥BC,
∴∠APD=90°,
∴tanA==,
∴PD=t.
故答案为:(1)8﹣2t, t.
(2)不存在
在Rt△ABC中,∠C=90°,AC=6,BC=8,
∴AB=10
∵PD∥BC,
∴△APD∽△ACB,
∴,即,
∴AD=t,
∴BD=AB﹣AD=10﹣t,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵BQ∥DP,
∴当BQ=DP时,四边形PDBQ是平行四边形,
即8﹣2t=,解得:t=.
当t=时,PD==,BD=10﹣×=6,
∴DP≠BD,
∴▱PDBQ不能为菱形.
设点Q的速度为每秒v个单位长度,
则BQ=8﹣vt,PD=t,BD=10﹣t,
要使四边形PDBQ为菱形,则PD=BD=BQ,
当PD=BD时,即t=10﹣t,解得:t=
当PD=BQ,t=时,即=8﹣,解得:v=
当点Q的速度为每秒个单位长度时,经过秒,四边形PDBQ是菱形.
(3)如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.
依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).
设直线M1M2的解析式为y=kx+b,
∴,
解得,
∴直线M1M2的解析式为y=﹣2x+6.
∵点Q(0,2t),P(6﹣t,0)
∴在运动过程中,线段PQ中点M3的坐标(,t).
把x=代入y=﹣2x+6得y=﹣2×+6=t,
∴点M3在直线M1M2上.
过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.
∴M1M2=2
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴线段PQ中点M所经过的路径长为2单位长度.
由莲山课件提供http://www.5ykj.com/ 资源全部免费