由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年广东省阳江市江城区中考数学一模试卷
一、选择题(每题3分,共30分)
1.(3分)计算3×(﹣2)的结果是( )
A.5 B.﹣5 C.6 D.﹣6
2.(3分)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )
A.25% B.50% C.75% D.85%
3.(3分)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )
A.8 B.7 C.4 D.3
4.(3分)一个正比例函数的图象过点(2,﹣3),它的表达式为( )
A. B. C. D.
5.(3分)如图,是由五个相同的小正方体组成的几何体,则它的左视图是( )
A. B. C. D.
6.(3分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )
A.100° B.80° C.70° D.50°
7.(3分)如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.弦AB的长等于圆内接正六边形的边长
B.弦AC的长等于圆内接正十二边形的边长
C.
D.∠BAC=30°
8.(3分)不等式的解集是( )
A.﹣<x≤2 B.﹣3<x≤2 C.x≥2 D.x<﹣3
9.(3分)如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( )
A.6cm B.12cm C.4cm D.8cm
10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:
①b2﹣4ac>0;②abc<0;③m>2.
其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
二、填空题(每题4分,共24分)
11.(4分)分解因式:ax4﹣9ay2= .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
12.(4分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为 .
13.(4分)如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件: ,可以使得△FDB与△ADE相似.(只需写出一个)
14.(4分)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是 .
15.(4分)若y=++2,则xy= .
16.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为 (结果保留π).
三、解答题一(每题6分,共18分)
17.(6分)计算:(﹣1)0+|2﹣|+3tan30°
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.(6分)先化简,再求值:(),其中x=﹣3.
19.(6分)在Rt△ABC中,∠C=90°.
(1)求作:∠A的平分线AD,AD交BC于点D;(保留作图痕迹,不写作法)
(2)若点D恰好在线段AB的垂直平分线上,求∠A的度数.
四、解答二(每题7分,共21分)
20.(7分)某电冰箱厂每个月的产量都比上个月增长的百分数相同.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了1.2万台.
(1)求该厂今年产量的月平均增长率为多少?
(2)预计7月份的产量为多少万台?
21.(7分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我区就“你每天在校体育活动时间是多少”的问题随机调查了区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:t<0.5h B组:0.5h≤t<1h C组:1h≤t<1.5h D组:t≥1.5h
请根据上述信息解答下列问题:
(1)C组的人数是 .
(2)本次调查数据的中位数落在 组内;
(3)若我区有5400名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(7分)如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,第一次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)
五、解答题三(每题9分,共27分)
23.(9分)如图,A(4,0),B(1,3),以OA、OB为边作平行四边形OACB,反比例函数y=的图象经过点C.
(1)求k的值;
(2)根据图象,直接写出y<3时自变量x的取值范围;
(3)将平行四边形OACB向上平移几个单位长度,使点B落在反比例函数的图象上.
24.(9分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.(9分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).
解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年广东省阳江市江城区中考数学一模试卷
参考答案与试题解析
一、选择题(每题3分,共30分)
1.(3分)计算3×(﹣2)的结果是( )
A.5 B.﹣5 C.6 D.﹣6
【解答】解:3×(﹣2),
=﹣(3×2),
=﹣6.
故选:D.
2.(3分)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( )
A.25% B.50% C.75% D.85%
【解答】解:抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故正面朝上的概率=.
故选:B.
3.(3分)已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )
A.8 B.7 C.4 D.3
【解答】解:分两种情况讨论:
①当7为腰长,3为底边时,三边为7、7、3,能组成三角形,故第三边的长为7,
②当3为腰长,7为底边时,三边为7、3、3,3+3=6<7,所以不能组成三角形.
因此第三边的长为7.
故选:B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
4.(3分)一个正比例函数的图象过点(2,﹣3),它的表达式为( )
A. B. C. D.
【解答】解:设函数的解析式是y=kx.
根据题意得:2k=﹣3.
解得:k=﹣.
故函数的解析式是:y=﹣x.
故选:A.
5.(3分)如图,是由五个相同的小正方体组成的几何体,则它的左视图是( )
A. B. C. D.
【解答】解:从左面可看到1列小正方形的个数为:3,故选D.
6.(3分)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )
A.100° B.80° C.70° D.50°
【解答】解:延长BD交AC于E.
∵DA=DB=DC,
∴∠ABE=∠DAB=20°,∠ECD=∠DAC=30°.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
又∵∠BAE=∠BAD+∠DAC=50°,
∠BDC=∠DEC+∠ECD,∠DEC=∠ABE+∠BAE,
∴∠BDC=∠ABE+∠BAE+∠ECD=20°+50°+30°=100°.
故选:A.
7.(3分)如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是( )
A.弦AB的长等于圆内接正六边形的边长
B.弦AC的长等于圆内接正十二边形的边长
C.
D.∠BAC=30°
【解答】解:A、因为OA=OB,OA=AB,所以OA=OB=AB,所以△ABO为等边三角形,∠AOB=60°,以AB为一边可构成
正六边形,故A正确;
B、因为OC⊥AB,根据垂径定理可知, =;再根据A中结论,弦AC的长等于圆内接正十二边形的边长,故B正确;
C、根据垂径定理, =,故C正确;
D、根据圆周角定理,圆周角的度数等于它所对的圆心角的度数的一半,∠BAC=∠BOC=×∠BOA=×60°=15°,故D错误.
故选:D.
8.(3分)不等式的解集是( )
A.﹣<x≤2 B.﹣3<x≤2 C.x≥2 D.x<﹣3
【解答】解:由①得:x>﹣3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由②得:x≤2,
所以不等式组的解集为﹣3<x≤2.
故选:B.
9.(3分)如图,▱ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为( )
A.6cm B.12cm C.4cm D.8cm
【解答】解:∵▱ABCD的周长是28cm,
∴AB+BC=14cm,
∵AB+BC+AC=22cm,
∴AC=22﹣14=8 cm.
故选:D.
10.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:
①b2﹣4ac>0;②abc<0;③m>2.
其中,正确结论的个数是( )
A.0 B.1 C.2 D.3
【解答】解:①∵二次函数y=ax2+bx+c与x轴有两个交点,
∴b2﹣4ac>0,故①正确;
②∵抛物线的开口向下,
∴a<0,
∵抛物线与y轴交于正半轴,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴c>0,
∵对称轴x=﹣>0,
∴ab<0,
∵a<0,
∴b>0,
∴abc<0,故②正确;
③∵一元二次方程ax2+bx+c﹣m=0没有实数根,
∴y=ax2+bx+c和y=m没有交点,
由图可得,m>2,故③正确.
故选:D.
二、填空题(每题4分,共24分)
11.(4分)分解因式:ax4﹣9ay2= a(x2+3y)(x2﹣3y) .
【解答】解:原式=a(x4﹣9y2)=a(x2+3y)(x2﹣3y),
故答案为:a(x2+3y)(x2﹣3y)
12.(4分)如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为 4 .
【解答】解:作MN⊥x轴于N,如图所示:
设M(x,y),
∵点M是函数y=x与y=的图象在第一象限内的交点,
∴M(x, x),
在Rt△OMN中,由勾股定理得:x2+(x)2=42,
解得:x=2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴M(2,2),
代入y=得:k=2×2=4;
故答案为:4.
13.(4分)如图,在△ABC中,AB≠AC.D、E分别为边AB、AC上的点.AC=3AD,AB=3AE,点F为BC边上一点,添加一个条件: DF∥AC,或∠BFD=∠A ,可以使得△FDB与△ADE相似.(只需写出一个)
【解答】解:DF∥AC,或∠BFD=∠A.
理由:∵∠A=∠A, ==,
∴△ADE∽△ACB,
∴①当DF∥AC时,△BDF∽△BAC,
∴△BDF∽△EAD.
②当∠BFD=∠A时,∵∠B=∠AED,
∴△FBD∽△AED.
故答案为DF∥AC,或∠BFD=∠A.
14.(4分)如图,点A(3,t)在第一象限,OA与x轴所夹的锐角为α,tanα=,则t的值是 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:过点A作AB⊥x轴于B,
∵点A(3,t)在第一象限,
∴AB=t,OB=3,
又∵tanα===,
∴t=.
故答案为:.
15.(4分)若y=++2,则xy= 9 .
【解答】解:y=有意义,
必须x﹣3≥0,3﹣x≥0,
解得:x=3,
代入得:y=0+0+2=2,
∴xy=32=9.
故答案为:9.
16.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为 π﹣4 (结果保留π).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:
设各个部分的面积为:S1、S2、S3、S4、S5,如图所示,
∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,
∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.
即阴影部分的面积=π×4+π×1﹣4×2÷2=π﹣4.
三、解答题一(每题6分,共18分)
17.(6分)计算:(﹣1)0+|2﹣|+3tan30°
【解答】解:原式=1+2﹣+
=3.
18.(6分)先化简,再求值:(),其中x=﹣3.
【解答】解:原式=﹣
=
=
=
=x+2
当x=﹣3时,原式=﹣3+2=﹣1.
19.(6分)在Rt△ABC中,∠C=90°.
(1)求作:∠A的平分线AD,AD交BC于点D;(保留作图痕迹,不写作法)
(2)若点D恰好在线段AB的垂直平分线上,求∠A的度数.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:(1)如图所示:AD即为所求;
(2)∵点D恰好在线段AB的垂直平分线上,
∴DA=DB,
∴∠B=∠DAB=∠DAC,
∵∠B+∠DAB+∠DAC=90°,
∴∠B=∠DAB=∠DAC=30°,
∴∠BAC=60°.
四、解答二(每题7分,共21分)
20.(7分)某电冰箱厂每个月的产量都比上个月增长的百分数相同.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了1.2万台.
(1)求该厂今年产量的月平均增长率为多少?
(2)预计7月份的产量为多少万台?
【解答】解:(1)设该厂今年产量的月平均增长率是x,根据题意得:
5(1+x)2﹣5(1+x)=1.2
解得:x=﹣1.2(舍去),x=0.2=20%.
答:该厂今年的产量的月增长率为20%;
(2)7月份的产量为:5(1+20%)3=8.64(万台).
答:预计7月份的产量为8.64万台.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
21.(7分)国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我区就“你每天在校体育活动时间是多少”的问题随机调查了区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:t<0.5h B组:0.5h≤t<1h C组:1h≤t<1.5h D组:t≥1.5h
请根据上述信息解答下列问题:
(1)C组的人数是 120 .
(2)本次调查数据的中位数落在 C 组内;
(3)若我区有5400名初中学生,请你估计其中达国家规定体育活动时间的人约有多少?
【解答】解:(1)C组的人数是300﹣(20+100+60)=120(人),
故答案为:120.
(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,
故调查数据的中位数落在C组,
故答案为:C;
(3)达国家规定体育活动时间的人数约占×100%=60%.
所以,达国家规定体育活动时间的人约有5400×60%=3240(人).
22.(7分)如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,第一次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:由题意知:∠AEG=30°,∠AFG=60°,EF=10米,BG=1.5米,
则∠EAF=∠AFG﹣∠AEG=30°,
故∠EAF=∠FEA,
可得:AF=EF=10米.
则AG=AF•sin∠AFG=10×=5(米),
故AB=AG+GB=(1.5+5)米,
答:旗杆的高度为(1.5+5)米.
五、解答题三(每题9分,共27分)
23.(9分)如图,A(4,0),B(1,3),以OA、OB为边作平行四边形OACB,反比例函数y=的图象经过点C.
(1)求k的值;
(2)根据图象,直接写出y<3时自变量x的取值范围;
(3)将平行四边形OACB向上平移几个单位长度,使点B落在反比例函数的图象上.
【解答】解:(1)∵平行四边形OACB中,A(4,0),B(1,3),
∴C(5,3),
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
把C(5,3)代入y=,得:3=,
解得:k=15;
(2)y<3时自变量x的取值范围为:x>5或x<0;
(3)把x=1代入y=,
解得:y=15,
∴向上平移15﹣3=12个单位.
24.(9分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.
(1)求证:AC平分∠DAB;
(2)求证:PC=PF;
(3)若tan∠ABC=,AB=14,求线段PC的长.
【解答】(1)证明:∵PD切⊙O于点C,
∴OC⊥PD,
又∵AD⊥PD,
∴OC∥AD,
∴∠ACO=∠DAC.
∵OC=OA,
∴∠ACO=∠CAO,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠DAC=∠CAO,
即AC平分∠DAB;
(2)证明:∵AD⊥PD,
∴∠DAC+∠ACD=90°.
又∵AB为⊙O的直径,
∴∠ACB=90°.
∴∠PCB+∠ACD=90°,
∴∠DAC=∠PCB.
又∵∠DAC=∠CAO,
∴∠CAO=∠PCB.
∵CE平分∠ACB,
∴∠ACF=∠BCF,
∴∠CAO+∠ACF=∠PCB+∠BCF,
∴∠PFC=∠PCF,
∴PC=PF;
(3)解:∵∠PAC=∠PCB,∠P=∠P,
∴△PAC∽△PCB,
∴.
又∵tan∠ABC=,
∴,
∴,
设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,
∵PC2+OC2=OP2,
∴(4k)2+72=(3k+7)2,
∴k=6 (k=0不合题意,舍去).
∴PC=4k=4×6=24.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
25.(9分)已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).
解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式,是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
【解答】解:(1)∵点A在线段PQ的垂直平分线上,
∴AP=AQ;
∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,
∴∠EQC=45°;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠DEF=∠EQC;
∴CE=CQ;
由题意知:CE=t,BP=2t,
∴CQ=t;
∴AQ=8﹣t;
在Rt△ABC中,由勾股定理得:AB=10cm;
则AP=10﹣2t;
∴10﹣2t=8﹣t;
解得:t=2;
答:当t=2s时,点A在线段PQ的垂直平分线上;
(2)如图1,过P作PM⊥BE,交BE于M,
∴∠BMP=90°;
在Rt△ABC和Rt△BPM中,sinB=,
∴=,
∴PM=t,
∵BC=6cm,CE=t,∴BE=6﹣t,
∴y=S△ABC﹣S△BPE=BC•AC﹣BE•PM=6×8﹣(6﹣t)×t
=t2﹣t+24=(t﹣3)2+,
∵a=,
∴抛物线开口向上;
∴当t=3时,y最小=;
答:当t=3s时,四边形APEC的面积最小,最小面积为cm2.
(3)假设存在某一时刻t,使点P、Q、F三点在同一条直线上;
如图2,过P作PN⊥AC,交AC于N
∴∠ANP=∠ACB=∠PNQ=90°;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵∠PAN=∠BAC,
∴△PAN∽△BAC,
∴,
∴,
∴PN=6﹣tAN=8﹣t,
∵NQ=AQ﹣AN,
∴NQ=8﹣t﹣(8﹣)=,
∵∠ACB=90°,B、C、E、F在同一条直线上,
∴∠QCF=90°,∠QCF=∠PNQ;
∵∠FQC=∠PQN,
∴△QCF∽△QNP;
∴,∴=;
∵0<t<4.5,∴=;
解得:t=1;
答:当t=1s,点P、Q、F三点在同一条直线上.
由莲山课件提供http://www.5ykj.com/ 资源全部免费