由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年新疆乌鲁木齐市中考数学模拟试卷(二)
一.选择题(共10小题,满分36分)
1.点A、B在数轴上的位置如图所示,其对应的数分别是a和b,下列结论中正确的是( )
A.b+a>0 B.a﹣b<0 C.|a|>|b| D.<0
2.(4分)如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )
A.76° B.78° C.80° D.82°
3.(4分)计算的结果是( )
A.﹣ B. C.﹣ D.
4.(4分)下列说法正确的是( )
A.“经过有交通信号的路口,遇到红灯,”是必然事件
B.已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次
C.处于中间位置的数一定是中位数
D.方差越大数据的波动越大,方差越小数据的波动越小
5.(4分)正十二边形的每一个内角的度数为( )
A.120° B.135° C.150° D.108°
6.(4分)一次函数y=kx+b(k,b是常数,k≠0)的图象,如图所示,则不等式kx+b>0的解集是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.x<2 B.x<0 C.x>0 D.x>2
7.(4分)为响应承办“绿色奥运”的号召,九年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是( )
A. B.
C. D.
8.(4分)已知一个立体图形,其正视图和侧视图均为等腰三角形,俯视图为半径为1cm的圆(含圆心),若它的侧面展开图的面积为2πcm2,则此几何体的高为( )
A. B.2cm C. D.4cm
9.(4分)一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M(图2),则EM的长为( )
A.2 B. C. D.
10.(4分)如图,已知直线y=﹣x+2分别与x轴,y轴交于A,B两点,与双曲线y=交于E,F两点,若AB=2EF,则k的值是( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A.﹣1 B.1 C. D.
二.填空题(共5小题,满分20分,每小题4分)
11.(4分)计算+(﹣2)0的结果为 .
12.(4分)如图,在菱形ABCD中,∠DAB=60°,AB=2,则菱形ABCD的面积为 .
13.(4分)某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是 %(注:利润率=×100%).
14.(4分)用等分圆周的方法,在半径为1的图中画出如图所示图形,则图中阴影部分面积为 .
15.(4分)二次函数y=ax2+bx+c(a<0)图象与x轴的交点A、B的横坐标分别为﹣3,1,与y轴交于点C,下面四个结论:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函数图象上的两点,则y1>
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
y2;③a=﹣c;④若△ABC是等腰三角形,则b=﹣.其中正确的有 (请将结论正确的序号全部填上)
三.解答题(共9小题,满分90分)
16.(8分)解关于x的不等式组:.
17.(8分)已知:ax=by=cz=1,求的值.
18.(10分)某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.
(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.
聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?
(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在﹣旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?
如果是你,你该如何设计租车方案,并说明理由.
19.(10分)如图,在平行四边形ABCD中,BE平分∠ABC交AD于点E,DF平分∠ADC交BC于F.求证:
(1)△ABE≌△CDF;
(2)若BD⊥EF,则判断四边形EBFD是什么特殊四边形,请证明你的结论.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.(12分)现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整):
步数
频数
频率
0≤x<4000
8
a
4000≤x<8000
15
0.3
8000≤x<12000
12
b
12000≤x<16000
c
0.2
16000≤x<20000
3
0.06
20000≤x<24000
d
0.04
请根据以上信息,解答下列问题:
(1)写出a,b,c,d的值并补全频数分布直方图;
(2)本市约有37800名教师,用调查的样本数据估计日行走步数超过12000步(包含12000步)的教师有多少名?
(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步的两名教师与大家分享心得,求被选取的两名教师恰好都在20000步(包含20000步)以上的概率.
21.(10分)在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.
(1)求该轮船航行的速度(保留精确结果);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
22.(10分)某学校要制作一批安全工作的宣传材料.甲公司提出:每份材料收费10元,另收1000元的版面设计费;乙公司提出:每份材料收费20元,不收版面设计费.请你帮助该学校选择制作方案.
23.(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于D.
(1)求证:△ADC∽△CDB;
(2)若AC=2,AB=CD,求⊙O半径.
24.(12分)如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年新疆乌鲁木齐市中考数学模拟试卷(二)
参考答案与试题解析
一.选择题(共10小题,满分36分)
1.
【解答】解:A、∵0<a<3,b<﹣3,
∴b+a<0,故选项错误;
B、∵0<a<3,b<﹣3,
∴a﹣b>0,故选项错误;
C、∵0<a<3,b<﹣3,
∴|a|<|b|,故选项错误;
D、∵0<a<3,b<﹣3,
∴<0,故选项正确.
故选:D.
2.
【解答】解:如图,分别过K、H作AB的平行线MN和RS,
∵AB∥CD,
∴AB∥CD∥RS∥MN,
∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,
∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),
∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,
∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,
又∠BKC﹣∠BHC=27°,
∴∠BHC=∠BKC﹣27°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠BKC=180°﹣2(∠BKC﹣27°),
∴∠BKC=78°,
故选:B.
3.
【解答】解:原式=(﹣×1.5)2016×(﹣1.5)=﹣1.5=﹣,
故选:A.
4.
【解答】解:A、“经过有交通信号的路口,遇到红灯,”是随机事件,故原题说法错误;
B、已知某篮球运动员投篮投中的概率为0.6,则他投10次一定可投中6次,说法错误;
C、处于中间位置的数一定是中位数,说法错误;
D、方差越大数据的波动越大,方差越小数据的波动越小,说法正确;
故选:D.
5.
【解答】解:正十二边形的每个外角的度数是: =30°,
则每一个内角的度数是:180°﹣30°=150°.
故选:C.
6.
【解答】解:函数y=kx+
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
b的图象经过点(2,0),并且函数值y随x的增大而减小,
所以当x<2时,函数值大于0,即关于x的不等式kx+b>0的解集是x<2.
故选:A.
7.
【解答】解:原计划植树用的时间应该表示为,而实际用的时间为.那么方程可表示为.
故选:A.
8.
【解答】解:∵圆锥的底面半径为1cm,侧面展开图的面积为2πcm2,
∴圆锥的母线长=2π÷π=2,
∴此几何体的高为==.
故选:A.
9.
【解答】解:∵点D与点A重合,得折痕EN,
∴DM=4cm,
∵AD=8cm,AB=6cm,
在Rt△ABD中,BD==10cm,
∵EN⊥AD,AB⊥AD,
∴EN∥AB,
∴MN是△ABD的中位线,
∴DN=BD=5cm,
在Rt△MND中,
∴MN==3(cm),
由折叠的性质可知∠NDE=∠NDC,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵EN∥CD,
∴∠END=∠NDC,
∴∠END=∠NDE,
∴EN=ED,设EM=x,则ED=EN=x+3,
由勾股定理得ED2=EM2+DM2,
即(x+3)2=x2+42,
解得x=,
即EM=cm.
故选:D.
10.
【解答】解:作FH⊥x轴,EC⊥y轴,FH与EC交于D,如图,
A点坐标为(2,0),B点坐标为(0,2),OA=OB,
∴△AOB为等腰直角三角形,
∴AB=OA=2,
∴EF=AB=,
∴△DEF为等腰直角三角形,
∴FD=DE=EF=1,
设F点横坐标为t,代入y=﹣x+2,则纵坐标是﹣t+2,则F的坐标是:(t,﹣t+2),E点坐标为(t+1,﹣t+1),
∴t(﹣t+2)=(t+1)•(﹣t+1),解得t=,
∴E点坐标为(,),
∴k=×=.
故选:D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二.填空题(共5小题,满分20分,每小题4分)
11.
【解答】解:原式=﹣2+1=﹣1,
故答案为:﹣1
12.
【解答】解:∵菱形ABCD,
∴AD=AB,OD=OB,OA=OC,
∵∠DAB=60°,
∴△ABD为等边三角形,
∴BD=AB=2,
∴OD=1,
在Rt△AOD中,根据勾股定理得:AO==,
∴AC=2,
则S菱形ABCD=AC•BD=2,
故答案为:2
13.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
【解答】解:设原利润率是x,进价为a,则售价为a(1+x),
根据题意得:﹣x=8%,
解之得:x=0.17
所以原来的利润率是17%.
14.
【解答】解:如图,设的中点为P,连接OA,OP,AP,
△OAP的面积是:×12=,
扇形OAP的面积是:S扇形=,
AP直线和AP弧面积:S弓形=﹣,
阴影面积:3×2S弓形=π﹣.
故答案为:π﹣.
15.
【解答】解:①∵a<0,
∴抛物线开口向下,
∵图象与x轴的交点A、B的横坐标分别为﹣3,1,
∴当x=﹣4时,y<0,
即16a﹣4b+c<0;
故①正确;
②∵图象与x轴的交点A、B的横坐标分别为﹣3,1,
∴抛物线的对称轴是:x=﹣1,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵P(﹣5,y1),Q(,y2),
﹣1﹣(﹣5)=4,﹣(﹣1)=3.5,
由对称性得:(﹣4.5,y3)与Q(,y2)是对称点,
∴则y1<y2;
故②不正确;
③∵﹣=﹣1,
∴b=2a,
当x=1时,y=0,即a+b+c=0,
3a+c=0,
a=﹣c;
④要使△ACB为等腰三角形,则必须保证AB=BC=4或AB=AC=4或AC=BC,
当AB=BC=4时,
∵BO=1,△BOC为直角三角形,
又∵OC的长即为|c|,
∴c2=16﹣1=15,
∵由抛物线与y轴的交点在y轴的正半轴上,
∴c=,
与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;
同理当AB=AC=4时,
∵AO=3,△AOC为直角三角形,
又∵OC的长即为|c|,
∴c2=16﹣9=7,
∵由抛物线与y轴的交点在y轴的正半轴上,
∴c=,
与b=2a、a+b+c=0联立组成解方程组,解得b=﹣;
同理当AC=BC时,
在△AOC中,AC2=9+c2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
在△BOC中BC2=c2+1,
∵AC=BC,
∴1+c2=c2+9,此方程无实数解.
经解方程组可知有两个b值满足条件.
故④错误.
综上所述,正确的结论是①③.
故答案是:①③.
三.解答题(共9小题,满分90分)
16.
【解答】解:∵,
由①得:(a﹣1)x>2a﹣3③,
由②得:x>,
当a﹣1>0时,解③得:x>,
若≥,即a≥时,
不等式组的解集为:x>;
当1≤a<时,不等式组的解集为:x≥;
当a﹣1<0时,解③得:x<,
若≥,即a≤时,<x<;
当a<1时,不等式组的解集为:<x<.
∴原不等式组的解集为:当a≥时,x>;
当a<时,<x<.
17.
【解答】解:根据题意可得x=,y=,z=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴+=+=+=1,
同理可得: +=1; +=1,
∴=3.
18.
【解答】解:(1)设45座客车每天租金x元,60座客车每天租金y元,
则
解得
故45座客车每天租金200元,60座客车每天租金300元;
(2)设学生的总数是a人,
则=+2
解得:a=240
所以租45座客车4辆、60座客车1辆,费用1100元,比较经济.
19.
【解答】:∵四边形ABCD是平行四边形,
∴AB=CD,AD=CB,AD∥CB,∠A=∠C,∠ABC=∠ADC,
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE=∠ABC,∠CDF=∠ADC,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)∴AE=CF,
∴DE=BF,
又∵DE∥BF,
∴四边形EBFD是平行四边形.
∵BD⊥EF,
∴四边形EBFD是菱形.
20.
【解答】解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,
补全频数分布直方图如下:
(2)37800×(0.2+0.06+0.04)=11340,
答:估计日行走步数超过12000步(包含12000步)的教师有11340名;
(3)设16000≤x<20000的3名教师分别为A、B、C,
20000≤x<24000的2名教师分别为X、Y,
画树状图如下:
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.
21.
【解答】解:(1)∵∠1=30°,∠2=60°,
∴△ABC为直角三角形.
∵AB=40km,AC=km,
∴BC===16(km).
∵1小时20分钟=80分钟,1小时=60分钟,
∴×60=12(千米/小时).
(2)能.
理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.
∵∠2=60°,
∴∠4=90°﹣60°=30°.
∵AC=8(km),
∴CS=8sin30°=4(km).
∴AS=8cos30°=8×=12(km).
又∵∠1=30°,
∴∠3=90°﹣30°=60°.
∵AB=40km,
∴BR=40•sin60°=20(km).
∴AR=40×cos60°=40×=20(km).
易得,△STC∽△RTB,
所以=,
,
解得:ST=8(km).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以AT=12+8=20(km).
又因为AM=19.5km,MN长为1km,∴AN=20.5km,
∵19.5<AT<20.5
故轮船能够正好行至码头MN靠岸.
22.
【解答】解:设制作x份材料时,甲公司收费y1元,乙公司收费y2元,
则y1=10x+1000,y2=20x,
由y1=y2,得10x+1000=20x,解得x=100
由y1>y2,得10x+1000>20x,解得x<100
由y1<y2,得10x+1000<20x,解得x>100
所以,当制作材料为100份时,两家公司收费一样,选择哪家都可行;
当制作材料超过100份时,选择甲公司比较合算;
当制作材料少于100份时,选择乙公司比较合算.
23.
【解答】(1)证明:如图,连接CO,
,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∵AB是圆O的直径,
∴∠ACB=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠ACO=∠BCD,
∵∠ACO=∠CAD,
∴∠CAD=∠BCD,
在△ADC和△CDB中,
∴△ADC∽△CDB.
(2)解:设CD为x,
则AB=x,OC=OB=x,
∵∠OCD=90°,
∴OD===x,
∴BD=OD﹣OB=x﹣x=x,
由(1)知,△ADC∽△CDB,
∴=,
即,
解得CB=1,
∴AB==,
∴⊙O半径是.
24.
【解答】解:(1)y=mx2﹣2mx﹣3m,
=m(x﹣3)(x+1),
∵m≠0,
∴当y=0时,x1=﹣1,x2=3,
∴A(﹣1,0),B(3,0);
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)设C1:y=ax2+bx+c,将A,B,C三点坐标代入得:
,
解得:,
故C1:y=x2﹣x﹣;
如图,过点P作PQ∥y轴,交BC于Q,
由B、C的坐标可得直线BC的解析式为y=x﹣,
设p(x, x2﹣x﹣),则Q(x, x﹣),PQ=x﹣﹣(x2﹣x﹣)=﹣x2+x,
S△PBC=S△PCQ+S△PBQ=PQ•OB=×3×(﹣x2+x)=﹣+x=﹣(x﹣)2+,
当x=时,Smax=,
∴P()
(3)y=mx2﹣2mx﹣3m=m(x﹣1)2﹣4m,
顶点M坐标(1,﹣4m),
当x=0时,y=﹣3m,
∴D(0,﹣3m),B(3,0),
∴DM2=(0﹣1)2+(﹣3m+4m)2=m2+1,
MB2=(3﹣1)2+(0+4m)2=16m2+4,
BD2=(3﹣0)2+(0+3m)2=9m2+9,
当△BDM为直角三角形时,分两种情况:
①当∠BDM=90°时,有DM2+BD2=MB2,
解得m1=﹣1,m2=1(∵m<0,∴m=1舍去);
②当∠BMD=90°时,有DM2+MB2=BD2,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解得m1=﹣,m2=(舍去),
综上,m=﹣1或﹣时,△BDM为直角三角形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费