由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年贵州省遵义市中考数学模拟试卷(四)
一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(3分)在﹣4,0,﹣1,3这四个数中,最大的数是( )
A.﹣4 B.0 C.﹣1 D.3
2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
3.(3分)正在修建的黔张常铁路,横跨渝、鄂、湘三省,起于重庆市黔江区黔江站,止于常德市武陵区常德站.铁路规划线路总长340公里,工程估算金额37500000000元.将数据37500000000用科学记数法表示为( )
A.0.375×1011 B.3.75×1011 C.3.75×1010 D.375×108
4.(3分)已知直线a∥b,一块含30°角的直角三角尺如图放置.若∠1=25°,则∠2等于( )
A.50° B.55° C.60° D.65°
5.(3分)下列计算结果正确的是( )
A.a4•a2=a8 B.(a5)2=a7 C.(a﹣b)2=a2﹣b2 D.(ab)2=a2b2
6.(3分)如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是( )
A. B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
7.(3分)已知a,b满足方程组,则a+b的值为( )
A.﹣4 B.4 C.﹣2 D.2
8.(3分)在数轴上表示不等式组的解集正确的是( )
A. B. C. D.
9.(3分)已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是( )
A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1
10.(3分)若一组数据1,2,3,4,x的平均数与中位数相同,则实数x的值不可能是( )
A.0 B.2.5 C.3 D.5
11.(3分)二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象可能是( )
A. B. C. D.
12.(3分)如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
A. B. C. D.
二、填空题(本大题共6小题,每小题4分,共24分)
13.(4分)因式分解:a3﹣ab2= .
14.(4分)若|x2﹣4x+4|与互为相反数,则x+y的值为 .
15.(4分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为 .
16.(4分)如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(3,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为 .
17.(4分)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=4,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为 .
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
18.(4分)如图,将▱ABCD沿EF对折,使点A落在点C处,若∠A=60°,AD=4,AB=6,则AE的长为 .
三、解答题(本题共9小题,共90分)
19.(6分)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017
20.(8分)已知a=b+2018,求代数式•÷的值.
21.(8分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方2米处的点C出发,沿斜面坡度i=1:的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB∥DE.求旗杆AB的高度.(参考数据:sin37°≈,cos37°≈,tan37°≈.计算结果保留根号)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
22.(10分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.
(1)请利用树状图列举出三次传球的所有可能情况;
(2)求三次传球后,球回到甲脚下的概率;
(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?
23.(10分)九 (1)班48名学生参加学校举行的“珍惜生命,远离毒品”知识竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.
频数分布表
分数段
频数(人数)
60≤x<70
a
70≤x<80
16
80≤x<90
24
90≤x<100
b
请解答下列问题:
(1)完成频数分布表,a= ,b= .
(2)补全频数分布直方图;
(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?
(4)九 (1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.
24.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(1)求证:BE=CF;
(2)当四边形ACDE为菱形时,求BD的长.
25.(12分)如图1,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.
(1)用含a的式子表示花圃的面积.
(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.
(3)已知某园林公司修建通道、花圃的造价y1(元)、y2(元)与修建面积x(m2)之间的函数关系如图2所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?
26.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.
(1)求证:DE⊥AC;
(2)若DE+EA=8,⊙O的半径为10,求AF的长度.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
27.(14分)在平面直角坐标系中,直线y=﹣x+1交y轴于点B,交x轴于点A,抛物线y=﹣x2+bx+c经过点B,与直线y=﹣x+1交于点C(4,﹣2).
(1)求抛物线的解析式;
(2)如图,横坐标为m的点M在直线BC上方的抛物线上,过点M作ME∥y轴交直线BC于点E,以ME为直径的圆交直线BC于另一点D,当点E在x轴上时,求△DEM的周长.
(3)将△AOB绕坐标平面内的某一点按顺时针方向旋转90°,得到△A1O1B1,点A,O,B的对应点分别是点A1,O1,B1,若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的坐标.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
2018年贵州省遵义市中考数学模拟试卷(四)
参考答案与试题解析
一、选择题(本题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.
【解答】解:∵|﹣4|=4,|﹣1|=1,
∴﹣4<﹣1,
∴﹣4,0,﹣1,3这四个数的大小关系为﹣4<﹣1<0<3.
故选:D.
2.
【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、既是轴对称图形,又是中心对称图形,故此选项正确;
故选:D.
3.
【解答】解:37500000000=3.75×1010.
故选:C.
4.
【解答】解:如图所示:
由三角形的外角性质得:∠3=∠1+30°=55°,
∵a∥b,
∴∠2=∠3=55°;
故选:B.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
5.
【解答】解:A.a4•a2=a6,故A错误;
B.(a5)2=a10,故B错误;
C.(a﹣b)2=a2﹣2ab+b2,故C错误;
D.(ab)2=a2b2,故D正确,
故选:D.
6.
【解答】解:从正面看易得第一列有2个正方形,第二列有3个正方形,第三列有1个正方形.
.
故选:C.
7.
【解答】解:,
①+②×5得:16a=32,即a=2,
把a=2代入①得:b=2,
则a+b=4,
故选:B.
8.
【解答】解:由x+1>﹣2得x>﹣3,
由4﹣2x≥﹣2得x≤3,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
则不等式组的解集为﹣3<x≤3.
则不等式组的解集在数轴上的正确表示为:
故选:D.
9.
【解答】解:根据题意得:△=b2﹣4ac=4﹣4(k﹣1)=8﹣4k>0,且k﹣1≠0,
解得:k<2,且k≠1.
故选:D.
10.
【解答】解:(1)将这组数据从小到大的顺序排列为1,2,3,4,x,
处于中间位置的数是3,
∴中位数是3,
平均数为(1+2+3+4+x)÷5,
∴3=(1+2+3+4+x)÷5,
解得x=5;符合排列顺序;
(2)将这组数据从小到大的顺序排列后1,2,3,x,4,
中位数是3,
此时平均数是(1+2+3+4+x)÷5=3,
解得x=5,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后1,x,2,3,4,
中位数是2,
平均数(1+2+3+4+x)÷5=2,
解得x=0,不符合排列顺序;
(4)将这组数据从小到大的顺序排列后x,1,2,3,4,
中位数是2,
平均数(1+2+3+4+x)÷5=2,
解得x=0,符合排列顺序;
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(5)将这组数据从小到大的顺序排列后1,2,x,3,4,
中位数,x,
平均数(1+2+3+4+x)÷5=x,
解得x=2.5,符合排列顺序;
∴x的值为0、2.5或5.
故选:C.
11.
【解答】解:∵二次函数图象开口方向向下,
∴a<0,
∵对称轴为直线x=﹣>0,
∴b>0,
∵与y轴的正半轴相交,
∴c>0,
∴y=ax+b的图象经过第一、二、四象限,
反比例函数y=图象在第一三象限,
只有C选项图象符合.
故选:C.
12.
【解答】解:∵PM⊥AB于点M,PN⊥CD于点N,
∴四边形ONPM是矩形,
又∵点Q为MN的中点,
∴点Q为OP的中点,
则OQ=1,
点Q走过的路径长==.
故选:A.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
二、填空题(本大题共6小题,每小题4分,共24分)
13.
【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).
14.
【解答】解:由题意得:x2﹣4x+4=0,2x﹣y﹣3=0,
解得:x=2,y=1,
则x+y=3,
故答案为:3.
15.
【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,
∴AO=12,OD=5,AC⊥BD,
∴AD=AB==13,
∵DH⊥AB,
∴AO×BD=DH×AB,
∴12×10=13×DH,
∴DH=,
∴BH==.
故答案为:.
16.
【解答】解:作N关于OA的对称点N′,连接N′M交OA于P,
则此时,PM+PN最小,
∵OA垂直平分NN′,
∴ON=ON′,∠N′ON=2∠AON=60°,
∴△NON′是等边三角形,
∵点M是ON的中点,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴N′M⊥ON,
∵点N(3,0),
∴ON=3,
∵点M是ON的中点,
∴OM=1.5,
∴PM=,
∴P(,).
故答案为:(,).
17.
【解答】解:如图所示:
,
由△ABC是等边三角形,高AD、BE相交于点H,BC=4,得
AD=BE=BC=6,∠ABG=∠HBD=30°.
由直角三角的性质,得∠BHD=90°﹣∠HBD=60°.
由对顶角相等,得∠MHE=∠BHD=60°
由BG=2,得EG=BE﹣BG=6﹣2=4.
由GE为边作等边三角形GEF,得
FG=EG=4,∠EGF=∠GEF=60°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
△MHE是等边三角形;
S△ABC=AC•BE=AC×EH×3
EH=BE=×6=2.
由三角形外角的性质,得∠BIG=∠FGE﹣∠IBG=60°﹣30°=30°,
由∠IBG=∠BIG=30°,得IG=BG=2,
由线段的和差,得IF=FG﹣IG=4﹣2=2,
由对顶角相等,得∠FIN=∠BIG=30°,
由∠FIN+∠F=90°,得∠FNI=90°,
由锐角三角函数,得FN=1,IN=.
S五边形NIGHM=S△EFG﹣S△EMH﹣S△FIN
=×42﹣×22﹣××1=,
故答案为:.
18.
【解答】解:过点C作CG⊥AB的延长线于点G,
在▱ABCD中,
∠D=∠EBC,AD=BC,∠A=∠DCB,
由于▱ABCD沿EF对折,
∴∠D′=∠D=∠EBC,∠D′CE=∠A=∠DCB,
D′C=AD=BC,
∴∠D′CF+∠FCE=∠FCE+∠ECB,
∴∠D′CF=∠ECB,
在△D′CF与△ECB中,
∴△D′CF≌△ECB(ASA)
∴D′F=EB,CF=CE,
∵DF=D′F,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴DF=EB,AE=CF
设AE=x,
则EB=6﹣x,CF=x,
∵BC=4,∠CBG=60°,
∴BG=BC=2,
由勾股定理可知:CG=2,
∴EG=EB+BG=6﹣x+2=8﹣x
在△CEG中,
由勾股定理可知:(8﹣x)2+(2)2=x2,
解得:x=AE=
故答案为:
三、解答题(本题共9小题,共90分)
19.
【解答】解:原式=6×+3+1+5﹣3﹣1=8.
20.
【解答】解:原式=××(a﹣b)(a+b)
=2(a﹣b)
∵a=b+2018,
∴原式=2×2018=4036
21.
【解答】解:如图,延长ED交BC延长线于点F,则∠CFD=90°,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∵tan∠DCF=i==,
∴∠DCF=30°,
∵CD=4,
∴DF=CD=2,CF=CDcos∠DCF=4×=2,
∴BF=BC+CF=2+2=4,
过点E作EG⊥AB于点G,
则GE=BF=4,GB=EF=ED+DF=1.5+2=3.5,
又∵∠AED=37°,
∴AG=GEtan∠AEG=4•tan37°,
则AB=AG+BG=4•tan37°+3.5=3+3.5,
故旗杆AB的高度为(3+3.5)米.
22.
【解答】解:(1)根据题意画出树状图如下:
由树形图可知三次传球有8种等可能结果;
(2)由(1)可知三次传球后,球回到甲脚下的概率=;
(3)由(1)可知球回到甲脚下的概率=,传到乙脚下的概率=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
所以球回到乙脚下的概率大.
23.
【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x<100的有90、99、99、99这4个,
即a=4、b=4,
故答案为:4,4;
(2)补全频数分布直方图如下:
(3)600×=50(人),
故答案为:估计该校成绩90≤x<100范围内的学生有50人.
(4)画树状图得:
∵共有6种等可能的结果,甲、乙被选中的有2种情况,
∴甲、乙被选中的概率为=.
24.
【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AE=AB,AF=AC,∠EAF=∠BAC,
∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,
∵AB=AC,
∴AE=AF,
∴△AEB可由△AFC绕点A按顺时针方向旋转得到,
∴BE=CF;
(2)解:∵四边形ACDE为菱形,AB=AC=1,
∴DE=AE=AC=AB=1,AC∥DE,
∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
∴∠AEB=∠ABE=45°,
∴△ABE为等腰直角三角形,
∴BE=AC=,
∴BD=BE﹣DE=﹣1.
25.
【解答】解:(1)由图可知,花圃的面积为(40﹣2a)(60﹣2a);
(2)由已知可列式:60×40﹣(40﹣2a)(60﹣2a)=×60×40,
解以上式子可得:a1=5,a2=45(舍去),
答:所以通道的宽为5米;
(3)设修建的道路和花圃的总造价为y,通道宽为a;
x花圃=(40﹣2a)(60﹣2a)=4a2﹣200a+2400;
x通道=60×40﹣(40﹣2a)(60﹣2a)=﹣4a2+200a,
由已知得y1=40(﹣4a2+200a),(2≤a≤10)
y2=
则y=y1+y2=
当a=2时,y有最小值,最小值为105920;
所以当通道宽为2米时,修建的通道和花圃的总造价最低为105920元.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
26.
【解答】(1)证明:∵OB=OD,
∴∠ABC=∠ODB,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ODB=∠ACB,
∴OD∥AC.
∵DE是⊙O的切线,OD是半径,
∴DE⊥OD,
∴DE⊥AC;
(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,
∴四边形ODEH是矩形,
∴OD=EH,OH=DE.
设AH=x.
∵DE+AE=8,OD=10,
∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.
在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,
解得x1=8,x2=﹣6(不合题意,舍去).
∴AH=8.
∵OH⊥AF,
∴AH=FH=AF,
∴AF=2AH=2×8=16.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
27.
【解答】解:(1)∵直线y=﹣x+1交y轴于点B,
∴B(0,1),
∵抛物线y=﹣x2+bx+c经过点B和点C(4,﹣2).
∴,
解得:,
∴抛物线的解析式为:y=﹣x2+x+1;
(2)如图1,∵直线y=﹣x+1交x轴于点A,
当y=0时,﹣x+1=0,
x=,
∴A(,0),
∴OA=,
在Rt△AOB中,
∵OB=1,
∴AB=,
∴sin∠ABO=,cos∠ABO==,
∵ME∥x轴,
∴∠DEM=∠ABO,
∵以ME为直径的圆交直线BC于另一点D,
∴∠EDM=90°,
∴DE=ME•cos∠DEM=ME,
DM=ME•sin∠DEM=ME,
当点E在x轴上时,E和A重合,则m=OA=,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
当x=时,y=﹣×+×+1=;
∴ME=,
∴DE==,DM==,
∴△DEM的周长=DE+DM+ME=++=;
(3)由旋转可知:O1A1⊥x轴,O1B1⊥y轴,设点A1的横坐标为x,则点B1的横坐标为x+1,
∵O1A1⊥x轴,
∴点O1,A1不可能同时落在抛物线上,分以下两种情况:
①如图2,当点O1,B1同时落在抛物线上时,
点O1,B1的纵坐标相等,
∴﹣=﹣(x+1)2+(x+1)+1,
解得:x=,
此时点A1的坐标为(,),
②如图3,当点A1,B1同时落在抛物线上时,
点B1的纵坐标比点A1的纵坐标大,
﹣=﹣(x+1)2+(x+1)+1,
解得:x=﹣,
此时A1(﹣,),
综上所述,点A1(,)或(﹣,).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费